如圖,△ABC在平面直角坐標系中,畫出△ABC關于原點的對稱圖形△A1B1C1,并寫出A1、B1、C1的坐標.
分析:首先寫出△ABC頂點坐標,再根據(jù)關于原點對稱的點的坐標特點得到A1、B1、C1的坐標,然后畫出圖形即可.
解答:解:如圖所示:
根據(jù)坐標系可得A(2,4),B(-4,1),C(4,-4),
關于原點的對稱圖形△A1B1C1,中A1(-2,-4),B1、(4,-1)、C1(-4,4).
點評:此題主要考查了作圖,以及關于原點的對稱的點的坐標特點,關鍵是掌握關于原點對稱的點的坐標特征:橫縱坐標互為相反數(shù).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,△ABC在平面直角坐標系中,點A(3,2)、B(0,2)、C(1,0).解答問題:
(1)請按要求對△ABC作如下變換:
①將△ABC繞點O逆時針旋轉(zhuǎn)90°得到△A1B1C1
②以點O為位似中心,位似比為2:1,將△ABC在位似中心的異側(cè)進行放大得到△A2B2C2;并寫出點A1,A2的坐標:
 
,
 

(2)在△ABC內(nèi),點P的坐標為(a,b),在△A1B1C1中與之對應的點為Q,在△A2B2C2中與之對應的點為R.則S△PQR=
 
.(用含a,b的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、如圖,△ABC在平面直角坐標系內(nèi)三頂點坐標分別為A(1,2),B(3,3),C(3,1)
(1)先畫出△ABC;
(2)以B為位似中心,畫出△A1BC1,使△A1BC1與△ABC相似且相似比為2:1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、如圖,△ABC在平面直角坐標系中A(1,3),B(-4,1),C(-3,2),以x軸為對稱軸作對稱變換,畫出△A1B1C1,同時在x軸上找一點P,使P到A、B兩點距離和最?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC在平面直角坐標系內(nèi)三頂點坐標分別為A(1,2),B(3,3),C(3,1).
(1)先畫出△ABC;
(2)畫出△ABC關于y軸對稱的△A2B2C2;
(3)以B為位似中心,在B的下方畫出△A1BC1,使△A1BC1與△ABC相似且相似比為2:1;
(3)直接寫出A1與C1點的坐標,△A1BC1的面積.

查看答案和解析>>

同步練習冊答案