【題目】如圖1,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)A,C分別是直線y=﹣x+4與坐標(biāo)軸的交點(diǎn),點(diǎn)B的坐標(biāo)為(﹣2,0),點(diǎn)D是邊AC上的一點(diǎn),DE⊥BC于點(diǎn)E,點(diǎn)F在邊AB上,且D,F兩點(diǎn)關(guān)于y軸上的某點(diǎn)成中心對(duì)稱,連結(jié)DF,EF.設(shè)點(diǎn)D的橫坐標(biāo)為m,EF2為l,請(qǐng)?zhí)骄浚?/span>
①線段EF長(zhǎng)度是否有最小值.
②△BEF能否成為直角三角形.
小明嘗試用“觀察﹣猜想﹣驗(yàn)證﹣應(yīng)用”的方法進(jìn)行探究,請(qǐng)你一起來(lái)解決問(wèn)題.
(1)小明利用“幾何畫(huà)板”軟件進(jìn)行觀察,測(cè)量,得到l隨m變化的一組對(duì)應(yīng)值,并在平面直角坐標(biāo)系中以各對(duì)應(yīng)值為坐標(biāo)描點(diǎn)(如圖2).請(qǐng)你在圖2中連線,觀察圖象特征并猜想l與m可能滿足的函數(shù)類別.
(2)小明結(jié)合圖1,發(fā)現(xiàn)應(yīng)用三角形和函數(shù)知識(shí)能驗(yàn)證(1)中的猜想,請(qǐng)你求出l關(guān)于m的函數(shù)表達(dá)式及自變量的取值范圍,并求出線段EF長(zhǎng)度的最小值.
(3)小明通過(guò)觀察,推理,發(fā)現(xiàn)△BEF能成為直角三角形,請(qǐng)你求出當(dāng)△BEF為直角三角形時(shí)m的值.
【答案】(1)連線見(jiàn)解析,二次函數(shù);(2);(3)m=0或m=
【解析】
(1)根據(jù)描點(diǎn)法畫(huà)圖即可;
(2)過(guò)點(diǎn)F,D分別作FG,DH垂直于y軸,垂足分別為G,H,證明Rt△FGK≌Rt△DHK(AAS),由全等三角形的性質(zhì)得出FG=DH,可求出F(﹣m,﹣2m+4),根據(jù)勾股定理得出l=EF2=8m2﹣16m+16=8(m﹣1)2+8,由二次函數(shù)的性質(zhì)可得出答案;
(3)分三種不同情況,根據(jù)直角三角形的性質(zhì)得出m的方程,解方程求出m的值,則可求出答案.
解:(1)用描點(diǎn)法畫(huà)出圖形如圖1,由圖象可知函數(shù)類別為二次函數(shù).
(2)如圖2,過(guò)點(diǎn)F,D分別作FG,DH垂直于y軸,垂足分別為G,H,
則∠FGK=∠DHK=90°,
記FD交y軸于點(diǎn)K,
∵D點(diǎn)與F點(diǎn)關(guān)于y軸上的K點(diǎn)成中心對(duì)稱,
∴KF=KD,
∵∠FKG=∠DKH,
∴Rt△FGK≌Rt△DHK(AAS),
∴FG=DH,
∵直線AC的解析式為y=﹣x+4,
∴x=0時(shí),y=4,
∴A(0,4),
又∵B(﹣2,0),
設(shè)直線AB的解析式為y=kx+b,
∴,
解得,
∴直線AB的解析式為y=2x+4,
過(guò)點(diǎn)F作FR⊥x軸于點(diǎn)R,
∵D點(diǎn)的橫坐標(biāo)為m,
∴F(﹣m,﹣2m+4),
∴ER=2m,FR=﹣2m+4,
∵EF2=FR2+ER2,
∴l=EF2=8m2﹣16m+16=8(m﹣1)2+8,
令﹣+4=0,得x=,
∴0≤m≤.
∴當(dāng)m=1時(shí),l的最小值為8,
∴EF的最小值為2.
(3)①∠FBE為定角,不可能為直角.
②∠BEF=90°時(shí),E點(diǎn)與O點(diǎn)重合,D點(diǎn)與A點(diǎn),F點(diǎn)重合,此時(shí)m=0.
③如圖3,∠BFE=90°時(shí),有BF2+EF2=BE2.
由(2)得EF2=8m2﹣16m+16,
又∵BR=﹣m+2,FR=﹣2m+4,
∴BF2=BR2+FR2=(﹣m+2)2+(﹣2m+4)2=5m2﹣20m+20,
又∵BE2=(m+2)2,
∴(5m2﹣20m+8)+(8m2﹣16m+16)2=(m+2)2,
化簡(jiǎn)得,3m2﹣10m+8=0,
解得m1=,m2=2(不合題意,舍去),
∴m=.
綜合以上可得,當(dāng)△BEF為直角三角形時(shí),m=0或m=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一艘輪船向正東方向航行,在A處測(cè)得燈塔P在A的北偏東60°方向,航行40海里到達(dá)B處,此時(shí)測(cè)得燈塔P在B的北偏東15°方向.
(1)求燈塔P到輪船航線的距離PD;(結(jié)果保留根號(hào))
(2)當(dāng)輪船從B處繼續(xù)向東航行時(shí),一艘快艇從燈塔P處同時(shí)前往D處,盡管快艇速度是輪船速度的2倍,但快艇還是比輪船晚15分鐘到達(dá)D處,求輪船每小時(shí)航行多少海里.(結(jié)果精確到1海里,參考數(shù)據(jù)≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為檢測(cè)師生體溫,在校門安裝了某型號(hào)測(cè)溫門.如圖為該測(cè)溫門截面示意圖,已知測(cè)溫門AD的頂部A處距地面高為2.2m,為了解自己的有效測(cè)溫區(qū)間.身高1.6m的小聰做了如下實(shí)驗(yàn):當(dāng)他在地面N處時(shí)測(cè)溫門開(kāi)始顯示額頭溫度,此時(shí)在額頭B處測(cè)得A的仰角為18°;在地面M處時(shí),測(cè)溫門停止顯示額頭溫度,此時(shí)在額頭C處測(cè)得A的仰角為60°.求小聰在地面的有效測(cè)溫區(qū)間MN的長(zhǎng)度.(額頭到地面的距離以身高計(jì),計(jì)算精確到0.1m,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=x2,當(dāng)a≤x≤b時(shí)m≤y≤n,則下列說(shuō)法正確的是( 。
A.當(dāng)n﹣m=1時(shí),b﹣a有最小值
B.當(dāng)n﹣m=1時(shí),b﹣a有最大值
C.當(dāng)b﹣a=1時(shí),n﹣m無(wú)最小值
D.當(dāng)b﹣a=1時(shí),n﹣m有最大值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將一把矩形直尺ABCD和一塊含30°角的三角板EFG擺放在平面直角坐標(biāo)系中,AB在x軸上,點(diǎn)G與點(diǎn)A重合,點(diǎn)F在AD上,三角板的直角邊EF交BC于點(diǎn)M,反比例函數(shù)y=(x>0)的圖象恰好經(jīng)過(guò)點(diǎn)F,M.若直尺的寬CD=3,三角板的斜邊FG=,則k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,以BC為直徑的圓分別交邊AC、AB于D、E兩點(diǎn),連接BD、DE.若BD平分∠ABC,則下列結(jié)論不一定成立的是( )
A. BD⊥AC B. AC2=2ABAE C. △ADE是等腰三角形 D. BC=2AD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(a≠0)的對(duì)稱軸為直線,且拋物線經(jīng)過(guò)A(1,0),C(0,3)兩點(diǎn),與軸交于點(diǎn)B.
(1)若直線經(jīng)過(guò)B,C兩點(diǎn),求直線BC和拋物線的解析式;
(2)在拋物線的對(duì)稱軸上找一點(diǎn)M,使MA+MC的值最小,求點(diǎn)M的坐標(biāo);
(3)設(shè)P為拋物線的對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),求使ΔBPC為直角三角形的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(8,1),B(0,3),反比例函數(shù)(x>0)的圖象經(jīng)過(guò)點(diǎn)A,動(dòng)直線x=t(0<t<8)與反比例函數(shù)的圖象交于點(diǎn)M,與直線AB交于點(diǎn)N.
(1)求k的值;
(2)求△BMN面積的最大值;
(3)若MA⊥AB,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某年級(jí)共有150名女生,為了解該校女生實(shí)心球成績(jī)(單位:米)和仰臥起坐(單位:個(gè))的情況,從中隨機(jī)抽取30名女生進(jìn)行測(cè)試,獲得了她們的相關(guān)成績(jī),并對(duì)數(shù)據(jù)進(jìn)行整理、描述和分析,下面給出了部分信息.
.實(shí)心球成績(jī)的頻數(shù)分布表如下:
分組 | 6.2≤<6.6 | 6.6≤<7.0 | 7.0≤<7.4 | 7.4≤<7.8 | 7.8≤<8.2 | 8.2≤<8.6 |
頻數(shù) | 2 | 10 | 6 | 2 | 1 |
.實(shí)心球成績(jī)?cè)?/span>7.0≤<7.4.這組的是:
7.0 | 7.0 | 7.0 | 7.1 | 7.1 | 7.2 | 7.2 | 7.3 | 7.3 |
.一分鐘仰臥起坐成績(jī)?nèi)鐖D所示:
根據(jù)以上信息,回答下列問(wèn)題:
(1)①表中m的值為 ;
②抽取學(xué)生一分鐘仰臥起坐成績(jī)的中位數(shù)為 個(gè);
(2)若實(shí)心球成績(jī)達(dá)到7.2米及以上,成績(jī)記為優(yōu)秀,請(qǐng)估計(jì)全年級(jí)女生成績(jī)達(dá)到優(yōu)秀的人數(shù).
(3)該年級(jí)某班體育委員將本班在這次抽樣測(cè)試中被抽取的8名女生的兩項(xiàng)成績(jī)的數(shù)據(jù)抄錄如下:
女生代碼 | A | B | C | D | E | F | G | H |
實(shí)心球 | 8.1 | 7.7 | 7.5 | 7.5 | 7.3 | 7.2 | 7.0 | 6.5 |
一分鐘仰臥起坐 | * | 42 | 47 | * | 47 | 52 | * | 49 |
其中有2名女生的一分鐘仰臥起坐成績(jī)未抄錄完整,當(dāng)老師說(shuō)這8名女生恰好有4人兩項(xiàng)測(cè)試成績(jī)都達(dá)到了優(yōu)秀,于是體育委員推測(cè)女生E的一分鐘仰臥起坐成績(jī)達(dá)到了優(yōu)秀,你同意體育委員的說(shuō)法嗎?并說(shuō)明你的理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com