【題目】如圖,△ABC為⊙O的內(nèi)接三角形,P為BC延長(zhǎng)線上一點(diǎn),∠PAC=∠B,AD為⊙O的直徑,過C作CG⊥AD交AD于E,交AB于F,交⊙O于G.
(1)判斷直線PA與⊙O的位置關(guān)系,并說明理由;
(2)求證:AG2=AFAB;
(3)若⊙O的直徑為10,AC=2 ,AB=4 ,求△AFG的面積.
【答案】
(1)解:PA與⊙O相切.理由:
連接CD,
∵AD為⊙O的直徑,
∴∠ACD=90°,
∴∠D+∠CAD=90°,
∵∠B=∠D,∠PAC=∠B,
∴∠PAC=∠D,
∴∠PAC+∠CAD=90°,
即DA⊥PA,
∵點(diǎn)A在圓上,
∴PA與⊙O相切
(2)解:證明:如圖2,連接BG,
∵AD為⊙O的直徑,CG⊥AD,
∴ = ,
∴∠AGF=∠ABG,
∵∠GAF=∠BAG,
∴△AGF∽△ABG,
∴AG:AB=AF:AG,
∴AG2=AFAB
(3)解:解:如圖3,連接BD,
∵AD是直徑,
∴∠ABD=90°,
∵AG2=AFAB,AG=AC=2 ,AB=4 ,
∴AF= = ,
∵CG⊥AD,
∴∠AEF=∠ABD=90°,
∵∠EAF=∠BAD,
∴△AEF∽△ABD,
∴ ,
即 ,
解得:AE=2,
∴EF= =1,
∵EG= =4,
∴FG=EG﹣EF=4﹣1=3,
∴S△AFG= FGAE= ×3×2=3.
【解析】(1)首先連接CD,由AD為⊙O的直徑,可得∠ACD=90°,然后由圓周角定理,證得∠B=∠D,由已知∠PAC=∠B,可證得DA⊥PA,繼而可證得PA與⊙O相切.(2)首先連接BG,易證得△AFG∽△AGB,然后由相似三角形的對(duì)應(yīng)邊成比例,證得結(jié)論;(3)首先連接BD,由AG2=AFAB,可求得AF的長(zhǎng),易證得△AEF∽△ABD,即可求得AE的長(zhǎng),繼而可求得EF與EG的長(zhǎng),則可求得答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘海輪在A點(diǎn)時(shí)測(cè)得燈塔C在它的北偏東42°方向上,它沿正東方向航行80海里后到達(dá)B處,此時(shí)燈塔C在它的北偏西55°方向上.
(1)求海輪在航行過程中與燈塔C的最短距離(結(jié)果精確到0.1);
(2)求海輪在B處時(shí)與燈塔C的距離(結(jié)果保留整數(shù)).
(參考數(shù)據(jù):sin55°≈0.819,cos55°≈0.574,tan55°≈1.428,tan42°≈0.900,tan35°≈0.700,tan48°≈1.111)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某縣為了了解初中生對(duì)安全知識(shí)掌握情況,抽取了50名初中生進(jìn)行安全知識(shí)測(cè)試,并將測(cè)試成績(jī)進(jìn)行統(tǒng)計(jì)分析,繪制成了頻數(shù)分布表和頻數(shù)分布直方圖(未完成). 安全知識(shí)測(cè)試成績(jī)頻數(shù)分布表
組別 | 成績(jī)x(分?jǐn)?shù)) | 組中值 | 頻數(shù)(人數(shù)) |
1 | 90≤x<100 | 95 | 10 |
2 | 80≤x<90 | 85 | 25 |
3 | 70≤x<80 | 75 | 12 |
4 | 60≤x<70 | 65 | 3 |
(1)完成頻數(shù)分布直方圖;
(2)這個(gè)樣本數(shù)據(jù)的中位數(shù)在第組;
(3)若將各組的組中值視為該組的平均成績(jī),則此次測(cè)試的平均成績(jī)?yōu)?/span>;
(4)若將90分以上(含90分)定為“優(yōu)秀”等級(jí),則該縣10000名初中生中,獲“優(yōu)秀”等級(jí)的學(xué)生約為人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題探究)
(1)如圖①已知銳角△ABC,分別以AB、AC為腰,在△ABC的外部作等腰Rt△ABD和Rt△ACE,連接CD、BE,是猜想CD、BE的大小關(guān)系_____________ ;(不必證明)
(深入探究)
(2)如圖②△ABC、△ADE都是等腰直角三角形,點(diǎn)D在邊BC上(不與B、C重合),連接EC,則線段 BC,DC,EC 之間滿足的等量關(guān)系式為________________ ;(不必證明) 線段 AD2,BD2,CD2之間滿足的等量關(guān)系,并證明你的結(jié)論;
(拓展應(yīng)用)
(3)如圖③,在四邊形 ABCD 中,∠ABC=∠ACB=∠ADC=45°.若 BD=9,CD=3,
求 AD 的長(zhǎng).
① ② ③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)x,y定義一種新運(yùn)算T,規(guī)定T(x,y)=(其中a,b是非零常數(shù),且x+y≠0),這里等式右邊是通常的四則運(yùn)算.
如:T(3,1)=,T(m,﹣2)=.
(1)填空:T(4,﹣1)= (用含a,b的代數(shù)式表示);
(2)若T(﹣2,0)=﹣2且T(5,﹣1)=6.
①求a與b的值;
②若T(3m﹣10,m)=T(m,3m﹣10),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初中學(xué)生帶手機(jī)上學(xué),給學(xué)生帶來了方便,同時(shí)也帶來了一些負(fù)面影響.針對(duì)這種現(xiàn)象,某校九年級(jí)數(shù)學(xué)興趣小組的同學(xué)隨機(jī)調(diào)查了若干名家長(zhǎng)對(duì)“初中學(xué)生帶手機(jī)上學(xué)”現(xiàn)象的看法,統(tǒng)計(jì)整理并制作了如圖的統(tǒng)計(jì)圖:
(1)這次調(diào)查的家長(zhǎng)總?cè)藬?shù)為人,表示“無所謂”的家長(zhǎng)人數(shù)為人;
(2)隨機(jī)抽查一個(gè)接受調(diào)查的家長(zhǎng),恰好抽到“很贊同”的家長(zhǎng)的概率是;
(3)求扇形統(tǒng)計(jì)圖中表示“不贊同”的扇形的圓心角度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在△ABC中,∠A=90°,AB=AC,點(diǎn)D為BC的中點(diǎn).
(1)如圖①,若點(diǎn)E、F分別為AB、AC上的點(diǎn),且DE⊥DF,求證:BE=AF;
(2)若點(diǎn)E、F分別為AB、CA延長(zhǎng)線上的點(diǎn),且DE⊥DF,那么BE=AF嗎?請(qǐng)利用圖②說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校舉行“社會(huì)主義核心價(jià)值觀”知識(shí)比賽活動(dòng),全體學(xué)生都參加比賽,學(xué)校對(duì)參賽學(xué)生均給與表彰,并設(shè)置一、二、三等獎(jiǎng)和紀(jì)念獎(jiǎng)共四個(gè)獎(jiǎng)項(xiàng),賽后將獲獎(jiǎng)情況繪制成如下所示的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中所給的信息,解答下列問題:
(1)該校共有名學(xué)生;
(2)在圖①中,“三等獎(jiǎng)”所對(duì)應(yīng)扇形的圓心角度數(shù)是;
(3)將圖②補(bǔ)充完整;
(4)從該校參加本次比賽活動(dòng)的學(xué)生中隨機(jī)抽查一名.求抽到獲得一等獎(jiǎng)的學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC與△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,則△ABC與△A′B′C′的面積比為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com