【題目】如圖,直線與軸, 軸分別交于兩點,把沿著直線翻折后得到,則點的坐標是 ___________ 。
【答案】(,3)
【解析】
如圖,過點O'作O'C⊥OA,垂足為C.
∵點A是直線與x軸的交點,
又∵當y=0時, ,
∴,
∴點A的坐標為(, 0),
∴OA=.
∵點B是直線與y軸的交點,
又∵當x=0時, ,
∴點B的坐標為(0, 2),
∴OB=2.
∴在Rt△AOB中, .
∵在Rt△AOB中,AB=4,OB=2,即,
∴∠OAB=30°.
∵△AOB沿直線AB翻折得到△AO'B,
∴△AOB≌△AO'B,
∴∠O'AB=∠OAB=30°,O'A=OA=.
∴∠OAO'=∠OAB+∠O'AB=60°,即∠CAO'=60°,
∴在Rt△O'CA中,∠AO'C=90°-∠CAO'=90°-60°=30°,
∴在Rt△O'CA中, , ,
∴OC=OA-AC=-=.
∵OC=,O'C=3,
∴點O'的坐標為(, 3).
故本題應(yīng)填寫:(, 3).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,頂點M在y軸上的拋物線與直線y=x+1相交于A、B兩點,且點A在x軸上,點B的橫坐標為2,連結(jié)AM、BM.
(1)求拋物線的函數(shù)關(guān)系式;
(2)判斷△ABM的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲乙兩家綠化養(yǎng)護公司各自推出了校園綠化養(yǎng)護服務(wù)的收費方案.
甲公司方案:每月的養(yǎng)護費用y(元)與綠化面積x(平方米)是一次函數(shù)關(guān)系,如圖所示.
乙公司方案:綠化面積不超過1000平方米時,每月收取費用5500元;綠化面積超過1000平方米時,每月在收取5500元的基礎(chǔ)上,超過部分每平方米收取4元.
(1)求如圖所示的y與x的函數(shù)解析式;(不要求寫取值范圍)
(2)如果某學校目前的綠化面積是1200平方米.試通過計算說明:選擇哪家公司的服務(wù),每月的綠化養(yǎng)護費用較少.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從一個n邊形的同一個頂點出發(fā),分別連接這個頂點與其余各頂點,若把這個多邊形分割成6個三角形,則n的值是( )
A. 6 B. 7 C. 8 D. 9
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】遼寧男籃奪冠后,從4月21日至24日各類媒體關(guān)于“遼籃CBA奪冠”的相關(guān)文章達到81000篇,將數(shù)據(jù)81000用科學記數(shù)法表示為( 。
A. 0.81×104B. 0.81×105C. 8.1×104D. 8.1×105
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=+bx+c與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;
(3)點E是線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,△CBF的面積最大?求出△CBF的最大面積及此時E點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠擬建一座平面圖形為矩形且面積為200平方米的三級污水處理池(平面圖如圖ABCD所示).由于地形限制,三級污水處理池的長、寬都不能超過16米.如果池的外圍墻建造單價為每米400元,中間兩條隔墻建造單價為每米300元,池底建造單價為每平方米80元.(池墻的厚度忽略不計)當三級污水處理池的總造價為47200元時,求池長x.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com