【題目】如圖,在△ABC中,∠C=90°,AB=5,BC=4. 點D是邊AC的中點,點E在邊AB上,將△ADE沿DE翻折,使點A落在點A′處,當(dāng)線段AE的長為_______時,A′E∥BC.
【答案】或
【解析】
根據(jù)∠C=90°,AB=5,BC=4,可得AC=3,由翻折的性質(zhì)可得△ADE≌△A′DE,由平行線的性質(zhì)可得,A′E⊥AC,通過圖形進(jìn)行計算即可解答.
解:∵C=90°,AB=5,BC=4,∴AC=3,
①當(dāng)A′點在直線AB的上方時,如圖所示,
∵△ADE沿DE翻折后,A′E∥BC,
∴△ADE≌△A′DE,∴AD= A′D= ,cos∠A= cos∠A′,
則 ,可得,A′F= , sin∠A= sin∠A′,可得DF= ,
∴AF=AD-DF=,
cos∠A== ,解得AE=;
②當(dāng)A′點在直線AB的下方時,如圖所示,
同理可得,AD= A′D=,A′F=, DF=,
∴CF=AC-AD-DF=,
∵四邊形EFCG是矩形,∴EG=CF=,
sin∠B= ,解得EB=,
∴AE=AB-EB=,
故答案為:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3(a≠0)的對稱軸為直線x=﹣1,拋物線交x軸于A、C兩點,與直線y=x﹣1交于A、B兩點,直線AB與拋物線的對稱軸交于點E.
(1)求拋物線的解板式.
(2)點P在直線AB上方的拋物線上運(yùn)動,若△ABP的面積最大,求此時點P的坐標(biāo).
(3)在平面直角坐標(biāo)系中,以點B、E、C、D為頂點的四邊形是平行四邊形,請直接寫出符合條件點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點A,B的坐標(biāo)分別為(-4,5),(-2,1).
(1)寫出點C及點C關(guān)于y軸對稱的點C′的坐標(biāo);
(2)請作出△ABC關(guān)于y軸對稱的△A′B′C′;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊長為4,∠A=60°,E是邊AD的中點,F是邊BC上的一個動點,EG=EF,且∠GEF=60°,則GB+GC的最小值為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩種客車,2輛甲種客車與3輛乙種客車的總載客量為180人,1輛甲種客車與2輛乙種客車的總載客量為105人.
(1)請問1輛甲種客車與1輛乙種客車的載客量分別為多少人?
(2)某學(xué)校組織240名師生集體外出活動,擬租用甲、乙兩種客車共6輛,一次將全部師生送到指定地點.若每輛甲種客車的租金為400元,每輛乙種客車的租金為280元,請給出最節(jié)省費(fèi)用的租車方案,并求出最低費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】母親節(jié)前,某淘寶店從廠家購進(jìn)某款網(wǎng)紅禮盒,已知該款禮盒每個成本價為30元.經(jīng)市場調(diào)查發(fā)現(xiàn),該禮盒每天的銷售量y(個)與銷售單價x(元)之間滿足一次函數(shù)關(guān)系.當(dāng)該款禮盒每個售價為40元時,每天可賣出300個;當(dāng)該款禮盒每個售價為55元時,每天可賣出150個.
(1)求y與x之間的函數(shù)解析式(不要求寫出x的取值范圍);
(2)若該店老板想達(dá)到每天不低于240個的銷售量,則該禮盒每個售價定為多少元時,每天的銷售利潤最大,最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直角△ABC中,∠ABC=90°,BC為圓O的直徑,D為圓O與斜邊AC的交點,DE為圓O的切線,DE交AB于F,且CE⊥DE.
(1)求證:CA平分∠ECB;
(2)若DE=3,CE=4,求AB的長;
(3)記△BCD的面積為S1,△CDE的面積為S2,若S1:S2=3:2.求sin∠AFD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( 。
A. 當(dāng)AB=BC時,平行四邊形ABCD是菱形
B. 當(dāng)AC⊥BD時,平行四邊形ABCD是菱形
C. 當(dāng)AC=BD時,平行四邊形ABCD是正方形
D. 當(dāng)∠ABC=90°時,平行四邊形ABCD是矩形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是
A. “明天降雨的概率是80%”表示明天有80%的時間都在降雨
B. “拋一枚硬幣正面朝上的概率為”表示每拋2次就有一次正面朝上
C. “彩票中獎的概率為1%”表示買100張彩票肯定會中獎
D. “拋一枚正方體骰子,朝上的點數(shù)為2的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)為2”這一事件發(fā)生的頻率穩(wěn)定在附近
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com