準備一張矩形紙片,按如圖操作:
將△ABE沿BE翻折,使點A落在對角線BD上的M點,將△CDF沿DF翻折,使點C落在對角線BD上的N點.
(1)求證:四邊形BFDE是平行四邊形;
(2)若四邊形BFDE是菱形,AB=2,求菱形BFDE的面積.
科目:初中數(shù)學 來源: 題型:
如圖①,將一張直角三角形紙片△ABC折疊,使點A與點C重合,這時DE為折痕,△CBE為等腰三角形;再繼續(xù)將紙片沿△CBE的對稱軸EF折疊,這時得到了兩個完全重合的矩形(其中一個是原直角三角形的內接矩形,另一個是拼合成的無縫隙、無重疊的矩形),我們稱這樣兩個矩形為“疊加矩形”.
(1)如圖②,正方形網(wǎng)格中的△ABC能折疊成“疊加矩形”嗎?如果能,請在圖②中畫出折痕;
(2)如圖③,在正方形網(wǎng)格中,以給定的BC為一邊,畫出一個斜三角形ABC,使其頂點A在格點上,且△ABC折成的“疊加矩形”為正方形;
(3)若一個三角形所折成的“疊加矩形”為正方形,那么它必須滿足的條件是什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在△ADF與△CBE中,點A,E,F(xiàn),C在同一直線上,現(xiàn)給出下列四個論斷:①AE=CF;②AD=CB;③∠B=∠D;④AD∥BC.請你選擇其中三個作為條件,余下的一個作為結論,構成一個命題.請問:
(1)在所有構成的命題中有假命題嗎?若有,請寫出它的條件和結論(用序號表示);若沒有,請說明理由;
(2)在所有構成的真命題中,任意選擇一個加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
(將一張正方形紙片按如圖1,圖2所示的方向對折,然后沿圖3中的虛線剪裁得到圖4,將圖4的紙片展開鋪平,再得到的圖案是( )
A. B C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,點E在BC上,將△ABC沿AE折疊,使點B落在AC邊上的點B′處,則BE的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
以下是某校九年級10名同學參加學校演講比賽的統(tǒng)計表:
成績/分 80 85 90 95
人數(shù)/人 1 2 5 2
則這組數(shù)據(jù)的中位數(shù)和平均數(shù)分別為( 。
A. 90,90 B.90,89 C.85,89 D. 85,90
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在矩形ABCD中,E,F(xiàn)分別為AD,BC的中點,連結AF,DF,BE,CE,AF與BE交于G,DF與CE交于H.求證:四邊形EGFH為菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com