【題目】如圖, OC AOB 的平分線, P OC 上的一點(diǎn), PD OA D PE OB E F OC 上的另一點(diǎn),連接 DF EF

(1)求證: DPF EPF ;

(2)比較 DF EF 的大小關(guān)系,并說明理由.

【答案】(1)詳見解析;(2)DF=EF,理由詳見解析.

【解析】

(1)先根據(jù)角平分線的性質(zhì)可以得出PD=PE,就可以得出PDO≌△PEO,就可以得出OPD OPE,進(jìn)而證明DPF EPF ;

(2)根據(jù)(1)中PDO≌△PEO,根據(jù)全等三角形的性質(zhì)得到,OD=OE,POD=POE,證明DOF≌△EOF,就可以得出結(jié)論.

證明:(1)OC是∠AOB的角平分線,PDOA,PEOB

PD=PE.

RtPDORtPEO中,

RtPDORtPEO(HL),

OPD OPE,

DPF EPF ;

(2)DF=EF.

理由如下:RtPDORtPEO(HL),

OD=OE,POD=POE.

DOFEOF中,

∴△DOFEOF(SAS),

DF=EF.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)生在素質(zhì)教育基地進(jìn)行社會(huì)實(shí)踐活動(dòng),幫助農(nóng)民伯伯采摘了黃瓜和茄子共40kg,了解到這些蔬菜的種植成本共42元,還了解到如下信息:

(1)請問采摘的黃瓜和茄子各多少千克?

(2)這些采摘的黃瓜和茄子可賺多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市計(jì)劃購進(jìn)一批甲、乙兩種玩具,已知5件甲種玩具的進(jìn)價(jià)與3件乙種玩具的進(jìn)價(jià)的和為231元,2件甲種玩具的進(jìn)價(jià)與3件乙種玩具的進(jìn)價(jià)的和為141元.

(1)求每件甲種、乙種玩具的進(jìn)價(jià)分別是多少元;

(2)近期批發(fā)商有優(yōu)惠活動(dòng),如圖所示,如果超市決定在甲、乙兩種玩具中選購其中一種,且數(shù)量超過20件,請你幫助超市判斷購進(jìn)哪種玩具更省錢.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(探索新知)

如圖1,點(diǎn)C在線段AB上,圖中共有3條線段:AB、ACBC,若其中有一條線段的長度是另一條線段長度的兩倍,則稱點(diǎn)C是線段AB的“二倍點(diǎn)”.

(1)一條線段的中點(diǎn)   這條線段的“二倍點(diǎn)”;(填“是”或“不是”)

(深入研究)

如圖2,若線段AB=20cm,點(diǎn)M從點(diǎn)B的位置開始,以每秒2cm的速度向點(diǎn)A運(yùn)動(dòng),當(dāng)點(diǎn)M到達(dá)點(diǎn)A時(shí)停止運(yùn)動(dòng),運(yùn)動(dòng)的時(shí)間為t秒.

(2)問t為何值時(shí),點(diǎn)M是線段AB的“二倍點(diǎn)”;

(3)同時(shí)點(diǎn)N從點(diǎn)A的位置開始,以每秒1cm的速度向點(diǎn)B運(yùn)動(dòng),并與點(diǎn)M同時(shí)停止.請直接寫出點(diǎn)M是線段AN的“二倍點(diǎn)”時(shí)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

(1)a3(-b32+(-2ab23

(2)(a-b)10÷(b-a)3÷(b-a)3;

(3)-22+(--2-(π-5)0-|-4|;

(4)(x+y-3)(x-y+3);

(5)3x2y(2x-3y)-(2xy+3y2)(3x2-3y);

(6)(x-2y)(x+2y)-(x-2y)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, AC BC , BD AD ,垂足分別為C 、D AC BD , AC BD 交于O

(1)求證: CAB DBA ;

(2)求證: SADO SBCO

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】湖州素有魚米之鄉(xiāng)之稱,某水產(chǎn)養(yǎng)殖大戶為了更好地發(fā)揮技術(shù)優(yōu)勢,一次性收購了 淡水魚,計(jì)劃養(yǎng)殖一段時(shí)間后再出售.已知每天放養(yǎng)的費(fèi)用相同,放養(yǎng) 天的總成本為 萬元;放養(yǎng) 天的總成本為 萬元(總成本=放養(yǎng)總費(fèi)用+收購成本).
(1)設(shè)每天的放養(yǎng)費(fèi)用是 萬元,收購成本為 萬元,求 的值;
(2)設(shè)這批淡水魚放養(yǎng) 天后的質(zhì)量為 ),銷售單價(jià)為 元/ .根據(jù)以往經(jīng)驗(yàn)可知: 的函數(shù)關(guān)系為 的函數(shù)關(guān)系如圖所示.

①分別求出當(dāng) 時(shí), 的函數(shù)關(guān)系式;
②設(shè)將這批淡水魚放養(yǎng) 天后一次性出售所得利潤為 元,求當(dāng) 為何值時(shí), 最大?并求出最大值.(利潤=銷售總額-總成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC為等邊三角形,AE=CD,AD、BE相交于點(diǎn)F.

(1)求證:△ABE≌△CAD;

(2)若BP⊥AD于點(diǎn)P,PF=9,EF=3,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,△ABC在平面直角坐標(biāo)系中的位置如圖所示.

(1)把△ABC向下平移2個(gè)單位長度得到△A1B1C1,請畫出△A1B1C1;

(2)請畫出△A1B1C1關(guān)于y軸對稱的△A2B2C2,并寫出A2的坐標(biāo);

(3)求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案