【題目】在Rt△ABC中,∠C=90°,AB=10cm,AC=8cm,點P為邊AC上一點,且AP=5cm.點Q為邊AB上的任意一點(不與點A,B重合),若點A關于直線PQ的對稱點A'恰好落在△ABC的邊上,則AQ的長為_____cm.

【答案】或4.

【解析】

由對稱可知AP=A'P,AQ=A'Q,由勾股定理可計算A'C,A'P,作A'HAB構造直角三角形,用勾股定理列方程組即可計算AQ的長.

RtABC中,∠C90°,AB10cm,AC8cm,

BC6cm,

①若點A'落在BC上,如圖:

A關于直線PQ的對稱點A',

∵點A關于直線PQ的對稱點A',

A'QAQ,APA'P,

AP5

PC3,A'C4,A'B2,

A'A4

A'H垂直AB,由勾股定理可得:

,

AQAQ'x,BHy,

,

解得:,

AQ的長為

②若點A'落在AB上,如圖:

∵點A關于直線PQ的對稱點A'

PQAB,

∴△APQABC,

,

,

AQ4

綜上所述:若點A關于直線PQ的對稱點A'恰好落在ABC的邊上,則AQ的長為4cm

故答案為4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了增強學生體質,決定開設以下體育課外活動項目:A籃球 B乒乓球C羽毛球 D足球,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調查,并將調查結果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:

(1)這次被調查的學生共有   人;

(2)請你將條形統(tǒng)計圖(2)補充完整;

(3)在平時的乒乓球項目訓練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某家具商場計劃購進某種餐桌和餐椅,已知每張餐椅的進價比每張餐桌的進價便宜110元,餐桌零售價270/張,餐椅零售價70/張.已知用600元購進的餐桌數(shù)量與用160元購進的餐椅數(shù)量相同.

1)求該家具商場計劃購進的餐桌、餐椅的進價分別為多少元?

2)若該商場購進餐椅的數(shù)量是餐桌數(shù)量的5倍還多20張,且餐桌和餐椅的總數(shù)量不超過200張.該商場計劃將一半的餐桌成套(一張餐桌和四張餐椅配成一套)銷售,售價500/套,其余餐桌、餐椅以零售方式銷售.請問該商場怎樣進貨,才能獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC中,AB=BC=5,tanABC=

(1)求邊AC的長;

(2)設邊BC的垂直平分線與邊AB的交點為D,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內接于⊙O,BD是⊙O的直徑,AECDCD的延長線于點EDA平分∠BDE

⑴求證:AE是⊙O的切線;

⑵若AE4cm,CD6cm,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“不出城郭而獲山水之怡,身居鬧市而有林泉之致”,合肥市某區(qū)不斷推進“園林城市”建設,今春種植了四類花苗,園林部門從種植的這批花苗中隨機抽取了2000株,將四類花苗的種植株數(shù)繪制成扇形統(tǒng)計圖,將四類花苗的成活株數(shù)繪制成條形統(tǒng)圖.經統(tǒng)計這批2000株的花苗總成活率為90%,其中玉蘭和月季的成活率較高,根據圖表中的信息解答下列問題:

(1)扇形統(tǒng)計圖中玉蘭所對的圓心角為 ,并補全條形統(tǒng)計圖;

(2)該區(qū)今年共種植月季8000株,成活了約 株;

(3)園林部門決定明年從這四類花苗中選兩類種植,請用列表法或畫樹狀圖求恰好選到成活率較高的兩類花苗的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市購進某種水果的成本為20/kg,經過市場調研發(fā)現(xiàn),這種水果在未來40天的銷售單價p(元/kg)與時間 t(天)之間的函數(shù)表達式為pt+30;(1≤t≤40t為整數(shù)),試銷售當天(正式銷售前一天)售出400kg,之后每天銷售量比前一天減少5千克;

1)試求每天銷售利潤W1(元)與時間t(天)之間的函數(shù)關系式;

2)在銷售前20天里,何時利潤為4320元?

3)為回饋新老顧客的支持,在實際銷售中,超市決定每銷售1kg水果就捐贈2元利潤給精準扶貧對象.在日銷售量不低于300kg的情況下,何時超市獲利最多?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, ABCD中,EFCDBD于點G,∠ECF=DGFDG=CE,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對任意一個兩位數(shù)m,如果m等于兩個正整數(shù)的平方和,那么稱這個兩位數(shù)m為“平方和數(shù)”,若ma2+b2a、b為正整數(shù)),記Am)=ab.例如:2922+5229就是一個“平方和數(shù)”,則A29)=2×510

1)判斷25是否是“平方和數(shù)”,若是,請計算A25)的值;若不是,請說明理由;

2)若k是一個“平方和數(shù)”,且Ak)=,求k的值.

查看答案和解析>>

同步練習冊答案