【題目】已知,拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A(﹣1,0)和C(0,3).
(1)求拋物線的解析式;
(2)設(shè)點(diǎn)M在拋物線的對(duì)稱(chēng)軸上,當(dāng)△MAC是以AC為直角邊的直角三角形時(shí),求點(diǎn)M的坐標(biāo).
【答案】(1)y=﹣x2+2x+3;(2)當(dāng)△MAC是直角三角形時(shí),點(diǎn)M的坐標(biāo)為(1,)或(1,﹣).
【解析】
(1)由點(diǎn)A、C的坐標(biāo),利用待定系數(shù)法即可求出拋物線的解析式;
(2)設(shè)點(diǎn)M的坐標(biāo)為(1,m),則CM=,AC=,AM=,分∠ACM=90°和∠CAM=90°兩種情況,利用勾股定理可得出關(guān)于m的方程,解之可得出m的值,進(jìn)而即可得出點(diǎn)M的坐標(biāo).
(1)將A(﹣1,0)、C(0,3)代入y=﹣x2+bx+c中,
得:,
解得:,
∴拋物線的解析式為y=﹣x2+2x+3.
(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
設(shè)點(diǎn)M的坐標(biāo)為(1,m),
則CM=,AC==,AM=.
分兩種情況考慮:
①當(dāng)∠ACM=90°時(shí),有AM2=AC2+CM2,即4+m2=10+1+(m﹣3)2,
解得:m=,
∴點(diǎn)M的坐標(biāo)為(1,);
②當(dāng)∠CAM=90°時(shí),有CM2=AM2+AC2,即1+(m﹣3)2=4+m2+10,
解得:m=﹣,
∴點(diǎn)M的坐標(biāo)為(1,﹣).
綜上所述:當(dāng)△MAC是直角三角形時(shí),點(diǎn)M的坐標(biāo)為(1,)或(1,﹣).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,利用一面墻(墻EF最長(zhǎng)可利用28米),圍成一個(gè)矩形花園ABCD.與墻平行的一邊BC上要預(yù)留2米寬的入口(如圖中MN所示,不用砌墻).現(xiàn)有砌60米長(zhǎng)的墻的材料.
(1)當(dāng)矩形的長(zhǎng)BC為多少米時(shí),矩形花園的面積為300平方米;
(2)能否圍成480平方米的矩形花園,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長(zhǎng)交⊙O于點(diǎn)E,連結(jié)EC.若AB=8,CD=2.
(1)求OD的長(zhǎng).
(2)求EC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的一元二次方程的兩個(gè)實(shí)數(shù)根的平方和為,那么的值是( )
A. 5 B. -1 C. 5或-1 D. -5或1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的邊長(zhǎng)為8,∠BAD=60°,點(diǎn)E是AD上一動(dòng)點(diǎn)(不與A、D重合),點(diǎn)F是CD上一動(dòng)點(diǎn),且AE+CF=8,則△DEF面積的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為增強(qiáng)身體素質(zhì),小明每天早上堅(jiān)持沿著小區(qū)附近的矩形公園ABCD練習(xí)跑步,爸爸站在的某一個(gè)固定點(diǎn)處負(fù)責(zé)進(jìn)行計(jì)時(shí)指導(dǎo)。假設(shè)小明在矩形公園ABCD的邊上沿著A→B→C→D→A的方向跑步一周,小明跑步的路程為x米,小明與爸爸之間的距離為y米.y與x之間的函數(shù)關(guān)系如圖2所示,則爸爸所在的位置可能為圖1的( )
A. D點(diǎn)B. M點(diǎn)C. O點(diǎn)D. N點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過(guò)點(diǎn)A作BC的平行線交BE的延長(zhǎng)線于點(diǎn)F,連接CF.
(1)求證:AF=DC;
(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論;
(3)在(2)的條件下,要使四邊形ADCF為正方形,在△ABC中應(yīng)添加什么條件,請(qǐng)直接把補(bǔ)充條件寫(xiě)在橫線上 (不需說(shuō)明理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于的一元二次方程.
(1)求證:方程總有兩個(gè)實(shí)數(shù)根;
(2)若方程有一根小于1,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對(duì)稱(chēng)軸為x=1,給出下列結(jié)論:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正確的結(jié)論有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com