如圖,在△ABC中,∠BAC=90°,AB=AC=6,D為BC的中點.

(1)若E、F分別是AB、AC上的點,且AE=CF,求證:△AED≌△CFD;
(2)當點F、E分別從C、A兩點同時出發(fā),以每秒1個單位長度的速度沿CA、AB運動,到點A、B時停止;設△DEF的面積為y,F(xiàn)點運動的時間為x,求y與x的函數(shù)關系式;
(3)在(2)的條件下,點F、E分別沿CA、AB的延長線繼續(xù)運動,求此時y與x的函數(shù)關系式.
(1)利用等腰直角三角形的性質得到∠BAD=∠DAC=∠B=∠C=45°,進而得到AD=BD=DC,為證明△AED≌△CFD提供了重要的條件;(2);(3)

試題分析:(1)利用等腰直角三角形的性質得到∠BAD=∠DAC=∠B=∠C=45°,進而得到AD=BD=DC,為證明△AED≌△CFD提供了重要的條件;
(2)利用S四邊形AEDF=SAED+SADF=SCFD+SADF=SADC="9" 即可得到y(tǒng)與x之間的函數(shù)關系式;
(3)依題意有:AF=BE=x-6,AD=DB,∠ABD=∠DAC=45°得到∠DAF=∠DBE=135°,從而得到△ADF≌△BDE,利用全等三角形面積相等得到SADF=SBDE從而得到SEDF=SEAF+SADB即可確定兩個變量之間的函數(shù)關系式.
(1)∵∠BAC=90° AB=AC=6,D為BC中點
∴∠BAD=∠DAC=∠B=∠C=45°    
∴AD=BD=DC
∵AE=CF
∴△AED≌△CFD(SAS)    
(2)依題意有:FC=AE=x,
∵△AED≌△CFD
∴S四邊形AEDF=SAED+SADF=SCFD+SADF=SADC=9     
∴SEDF=S四邊形AEDF-SAEF=9-(6-x)x=x2-3x+9
;
(3)依題意有:AF=BE=x-6,AD=DB,∠ABD=∠DAC=45°
∴∠DAF=∠DBE=135°    
∴△ADF≌△BDE    
∴SADF=SBDE
∴SEDF=SEAF+SADB=(x-6)x+9=x2-3x+9

點評:此類問題難度較大,在中考中比較常見,一般在壓軸題中出現(xiàn),需特別注意.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,三角形ABC是以BC為底邊的等腰三角形,點A、C分別是一次函數(shù)的圖象與y軸的交點,點B在二次函數(shù)的圖象上,且該二次函數(shù)圖象上存在一點D使四邊形ABCD能構成平行四邊形.

(1)試求b,c的值,并寫出該二次函數(shù)表達式;
(2)動點P從A到D,同時動點Q從C到A都以每秒1個單位的速度運動,問:
①當P運動到何處時,有PQ⊥AC?
②當P運動到何處時,四邊形PDCQ的面積最?此時四邊形PDCQ的面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線與x軸交于點A,B,與軸交于點C。過點C作CD∥x軸,交拋物線的對稱軸于點D,連結BD。已知點A坐標為(-1,0)。

(1)求該拋物線的解析式;
(2)求梯形COBD的面積。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知反比例函數(shù)y=的圖象與二次函數(shù)y=ax2+x-1的圖象相交于點(2,2)
(1)求a和k的值;
(2)反比例函數(shù)的圖象是否經(jīng)過二次函數(shù)圖象的頂點,為什么?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過原點和點(-2,0),則2a-3b   0.(>、<或=)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=a(x﹣m)2+n與y軸交于點A,它的頂點為點B,點A、B關于原點O的對稱點分別為C、D.若A、B、C、D中任何三點都不在一直線上,則稱四邊形ABCD為拋物線的伴隨四邊形,直線AB為拋物線的伴隨直線.

(1)如圖1,求拋物線y=(x﹣2)2+1的伴隨直線的表達式.
(2)如圖2,若拋物線y=a(x﹣m)2+n(m>0)的伴隨直線是y=x﹣3,伴隨四邊形的面積為12,求此拋物線的表達式.
(3)如圖3,若拋物線y=a(x﹣m)2+n的伴隨直線是y=﹣2x+b(b>0),且伴隨四邊形ABCD是矩形.用含b的代數(shù)式表示m、n的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結論正確的是
A.a(chǎn)<0
B.b2﹣4ac<0
C.當﹣1<x<3時,y>0
D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,點P是直線上的點,過點P的另一條直線交拋物線于A、B兩點.

(1)若直線的解析式為,求A、B兩點的坐標;
(2)①若點P的坐標為(-2,),當PA=AB時,請直接寫出點A的坐標;
②試證明:對于直線上任意給定的一點P,在拋物線上都能找到點A,使得PA=AB成立.
(3)設直線軸于點C,若△AOB的外心在邊AB上,且∠BPC=∠OCP,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

函數(shù)-4+3取得最小值時,        

查看答案和解析>>

同步練習冊答案