試題分析:(1)由點A的坐標為(-1,0)可得:OA=1;
(2)根據(jù)拋物線
過點A (-1,0),得到:b = c+
,聯(lián)立
,求出b,c的值即可;
(3)①分兩種情況進行討論:(Ⅰ)當﹣1<x<0時;(Ⅱ)當0<x<4時;
②由0<S<5,S為整數(shù),得出S=1,2,3,4.分兩種情況進行討論:(Ⅰ)當﹣1<x<0時,(Ⅱ)當0<x<4時.
試題解析:(1)OA=1;
(2)∵拋物線
過點A (-1,0),
∴b=c+
,
∵
,
∴
,
∵c<0,
∴
,
∴
,
∴拋物線的解析式
;
(3)①設(shè)點P坐標為(x,
).
∵點A的坐標為(﹣1,0),點B坐標為(4,0),點C坐標為(0,﹣2),
∴AB=5,OC=2,直線BC的解析式為y=
x﹣2.
分兩種情況:
(Ⅰ)當﹣1<x<0時,0<S<S
△ACB.
∵S
△ACB=
AB•OC=5,
∴0<S<5;
(Ⅱ)當0<x<4時,過點P作PG⊥x軸于點G,交CB于點F.
∴點F坐標為(x,
x﹣2),
∴PF=PG﹣GF=﹣(
x
2﹣
x﹣2)+(
x﹣2)=﹣
x
2+2x,
∴S=S
△PFC+S
△PFB=
PF•OB=
(﹣
x
2+2x)×4=﹣x
2+4x=﹣(x﹣2)
2+4,
∴當x=2時,S
最大值=4,
∴0<S≤4.
綜上可知0<S<5;
②∵0<S<5,S為整數(shù),
∴S=1,2,3,4.
分兩種情況:
(Ⅰ)當﹣1<x<0時,設(shè)△PBC中BC邊上的高為h.
∵點A的坐標為(﹣1,0),點B坐標為(4,0),點C坐標為(0,﹣2),
∴AC
2=1+4=5,BC
2=16+4=20,AB
2=25,
∴AC
2+BC
2=AB
2,∠ACB=90°,BC邊上的高AC=
.
∵S=
BC•h,∴h=
.
如果S=1,那么h=
×1=
<
,此時P點有1個,△PBC有1個;
如果S=2,那么h=
×2=
<
,此時P點有1個,△PBC有1個;
如果S=3,那么h=
×3=
<
,此時P點有1個,△PBC有1個;
如果S=4,那么h=
×4=
<
,此時P點有1個,△PBC有1個;
即當﹣1<x<0時,滿足條件的△PBC共有4個;
(Ⅱ)當0<x<4時,S=﹣x
2+4x.
如果S=1,那么﹣x
2+4x=1,即x
2﹣4x+1=0,
∵△=16﹣4=12>0,∴方程有兩個不相等的實數(shù)根,此時P點有2個,△PBC有2個;
如果S=2,那么﹣x
2+4x=2,即x
2﹣4x+2=0,
∵△=16﹣8=8>0,∴方程有兩個不相等的實數(shù)根,此時P點有2個,△PBC有2個;
如果S=3,那么﹣x
2+4x=3,即x
2﹣4x+3=0,
∵△=16﹣12=4>0,∴方程有兩個不相等的實數(shù)根,此時P點有2個,△PBC有2個;
如果S=4,那么﹣x
2+4x=4,即x
2﹣4x+4=0,
∵△=16﹣16=0,∴方程有兩個相等的實數(shù)根,此時P點有1個,△PBC有1個;
即當0<x<4時,滿足條件的△PBC共有7個;
綜上可知,滿足條件的△PBC共有4+7=11個.
故答案為
+c,﹣2c;11.
.