【題目】已知:如圖,四邊形ABCD中,AD∥BC,AB=BC=4,∠B=60°,∠C=105°,點E為BC的中點,以CE為弦作圓,設(shè)該圓與四邊形ABCD的一邊的交點為P,若∠CPE=30°,則EP的長為_____.
【答案】或4或2或2
【解析】
如圖,連接AC,AE,根據(jù)已知條件得到△ABC是等邊三角形,求得BE=CE=2,AE⊥BC,∠EAC=30°,推出AC是以CE為弦的圓的直徑,設(shè)圓心為O,當(dāng)⊙O與CD邊交于,則,過C作于H,解直角三角形得到;當(dāng)⊙O與AD交于,A(),由AD∥CE,推出四邊形是矩形,得到,P3E=CE=2,當(dāng)⊙O與AB交于,得到是等邊三角形,求得,于是得到結(jié)論.
如圖,連接AC,AE,
∵AB=BC=4,∠B=60°,
∴△ABC是等邊三角形,
∵點E為BC的中點,
∴BE=CE=2,AE⊥BC,∠EAC=30°,
∴AC是以CE為弦的圓的直徑,
設(shè)圓心為O,
當(dāng)⊙O與CD邊交于P1,則∠EP1C=∠EAC=30°,
∵∠ECP1=105°,
∴∠P1EC=45°,
過C作CH⊥P1E于H,
∴EH=CH=CE=,
∴P1H=HC=,
∴;
當(dāng)⊙O與AD交于P2、A(P3),
∵AD∥CE,
∴∠ECP2=∠AP2C=90°,
∴四邊形AECP2是矩形,
∴P2E=AC=4,P3E=CE=2,
當(dāng)⊙O與AB交于P4,
∵∠AP4C=90°,∠EP4C=30°,
∴∠BP4E=60°,
∴△BP4E是等邊三角形,
∴P4E=BE=2,
綜上所述,若∠CPE=30°,則EP的長為或4或2或2,
故答案為:或4或2或2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為迎接中華人民共和國成立七十周年,開展了以“不忘初心,緬懷革命先烈,奮斗新時代”為主題的讀書活動.德育處對九年級學(xué)生九月份“閱讀該主題相關(guān)書籍的讀書量”(下面簡稱:“讀書量”)進(jìn)行了隨機(jī)抽樣調(diào)查,并對所有隨機(jī)抽取學(xué)生的“讀書量”(單位:本)進(jìn)行了統(tǒng)計,繪制了兩幅不完整的統(tǒng)計圖(如圖所示).
(1)請補(bǔ)全兩幅統(tǒng)計圖;本次抽樣調(diào)查抽取了名學(xué)生;
(2)求本次所抽取學(xué)生九月份“讀書量”的平均數(shù);
(3)已知該校九年級有500名學(xué)生,請你估計該校九年級學(xué)生中,九月份“讀書量”為5本的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊三角形的頂點分別在反比例函數(shù)圖像的兩個分支上,點在反比例函數(shù)的圖像上,當(dāng)的面積最小時,的值__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知矩形OABC的頂點A在x軸上,頂點C在y軸上,OA=8,OC=4.點P為對角線AC 上一動點,過點P作PQ⊥PB,PQ交x軸于點Q.
(1)tan∠ACB=________;
(2)在點P從點C運動到點A的過程中,的值是否發(fā)生變化?如果變化,請求出其變化范圍;如果不變,請求出其值;
(3)若將△QAB沿直線BQ折疊后,點A與點P重合,則PC的長為________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,點分別是邊的中點,連接,
(1)如圖①,當(dāng)時,繞點逆時針旋轉(zhuǎn)得到,連接、,在旋轉(zhuǎn)過程中請猜想:______(直接寫出答案);
(2)如圖②,當(dāng)時,繞點逆時針旋轉(zhuǎn)得到,連接、,在旋轉(zhuǎn)過程中請猜想:的比值,并證明你的猜想;
(3)如圖③,當(dāng)時,繞點逆時針旋轉(zhuǎn)得到,連接、,請直接寫出在旋轉(zhuǎn)過程中的比值.(用含的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接“五一”國際勞動節(jié),某商場計劃購進(jìn)甲、乙兩種品牌的恤衫共100件,已知乙品牌每件的進(jìn)價比甲品牌每件的進(jìn)價貴30元,且用120元購買甲品牌的件數(shù)恰好是購買乙品牌件數(shù)的2倍.
(1)求甲、乙兩種品牌每件的進(jìn)價分別是多少元?
(2)商場決定甲品牌以每件50元出售,乙品牌以每件100元出售.為滿足市場需求,購進(jìn)甲種品牌的數(shù)量不少于乙種品牌數(shù)量的4倍,請你確定獲利最大的進(jìn)貨方案,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(3分)如圖,在直角坐標(biāo)系中,直線與坐標(biāo)軸交于A、B兩點,與雙曲線()交于點C,過點C作CD⊥x軸,垂足為D,且OA=AD,則以下結(jié)論:
①;
②當(dāng)0<x<3時,;
③如圖,當(dāng)x=3時,EF=;
④當(dāng)x>0時,隨x的增大而增大,隨x的增大而減。
其中正確結(jié)論的個數(shù)是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在平面直角坐標(biāo)系中點、是某函數(shù)圖象上任意兩點.將函數(shù)圖象中的部分沿直線作軸對稱,的部分沿直線作軸對稱,與原函數(shù)圖象中的部分組成了個新函數(shù)的圖象,稱這個新函數(shù)為原函數(shù)關(guān)于點、的“雙對稱函數(shù)”.
例如:如圖①,點、是一次函數(shù)圖象上的兩個點,則函數(shù)關(guān)于點、的“雙對稱函數(shù)”的圖象如圖②所示.
圖① 圖②
(1)點、是函數(shù)圖象上的兩點,關(guān)于點、的“雙對稱函數(shù)”的圖象記作.若是中心對稱圖形,直接寫出的值.
(2)點、是二次函數(shù)圖象上的兩點,該二次函數(shù)關(guān)于點、的“雙對稱函數(shù)”記作.
①求、兩點的坐標(biāo)(用含的代數(shù)式表示).
②當(dāng)時,求出函數(shù)的解析式;
③若時,函數(shù)的最小值為,求時,的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2020年的春節(jié),對于我們來說,有些不一樣,我們不能和小伙伴相約一起玩耍,不能去游樂場放飛自我,也不能和自己的兄弟姐妹一起吃美味的大餐,這么做,是因為我們每一個人都在面臨一個眼睛看不到的敵人,它叫病毒,殘酷的病毒會讓人患上肺炎,人與人的接觸會讓這種疾病快速地傳播開來,嚴(yán)重的還會有生命危險,目前我省已經(jīng)啟動突發(fā)公共衛(wèi)生事件一級應(yīng)急響應(yīng),但我們相信,只要大家一起努力,疫情終有會被戰(zhàn)勝的一天.
在這個不能出門的悠長假期里,某小學(xué)隨機(jī)對本校部分學(xué)生進(jìn)行“假期中,我在家可以這么做!A.扎實學(xué)習(xí)、B.快樂游戲、C.經(jīng)典閱讀、D.分擔(dān)勞動、E.樂享健康”的網(wǎng)絡(luò)調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖(若每一位同學(xué)只能選擇一項),請根據(jù)圖中的信息,回答下列問題.
(1)這次調(diào)查的總?cè)藬?shù)是 人;
(2)請補(bǔ)全條形統(tǒng)計圖,并說明扇形統(tǒng)計圖中E所對應(yīng)的圓心角是 度;
(3)若學(xué)校共有學(xué)生的1700人,則選擇C有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com