【題目】已知:如圖,△DAC、△EBC均是等邊三角形,點(diǎn)A、C、B在同一條直線上,且AE、BD分別與CD、CE交于點(diǎn)M、N.
求證:(1)AE=DB;
(2)△CMN為等邊三角形.
【答案】證明略
【解析】
證明:(1)∵△DAC、△EBC均是等邊三角形,
∴AC=DC,EC=BC,∠ACD=∠BCE=60°,………… 2分
∴∠ACD+∠DCE=∠BCE+∠DCE,
即∠ACE=∠DCB. ……………… 3分
在△ACE和△DCB中,
∴△ACE≌△DCB(SAS). ………… 5分
∴AE=DB. ……………… 6分
(2)由(1)可知:△ACE≌△DCB,
∴∠CAE=∠CDB,
即∠CAM=∠CDN. ……………… 7分
∵△DAC、△EBC均是等邊三角形,
∴AC=DC,∠ACM=∠BCE=60°.
又點(diǎn)A、C、B在同一條直線上,
∴∠DCE=180°-∠ACD-∠BCE=180°-60°-60°=60°,
即∠DCN=60°.
∴∠ACM=∠DCN. ………… 8分
在△ACM和△DCN中,
∴△ACM≌△DCN(ASA). ……………… 10分
∴CM=CN. ……………… 11分
又∠DCN=60°,
∴△CMN為等邊三角形. ……………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)平行四邊形的一條邊長(zhǎng)為5,兩條對(duì)角線的長(zhǎng)分別為6和8,則它的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)點(diǎn)A(2,0)的兩條直線l1、l2分別交y軸于點(diǎn)B、C,其中點(diǎn)B在原點(diǎn)上方,點(diǎn)C在原點(diǎn)下方,已知AB=.
(1)求點(diǎn)B的坐標(biāo);
(2)若OC:OB=1:3,求直線l2的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,已知AB=5,BC=8,AC=7,動(dòng)點(diǎn)P、Q分別在邊AB、AC上,使△APQ的外接圓與BC相切,則線段PQ的最小值等于_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知射線OC上的任意一點(diǎn)到∠AOB的兩邊的距離都相等,點(diǎn)D、E、F分別為邊OC、OA、OB上,如果要想證得OE=OF,只需要添加以下四個(gè)條件中的某一個(gè)即可,請(qǐng)寫出所有可能的條件的序號(hào)__________.
①∠ODE=∠ODF;②∠OED=∠OFD;③ED=FD;④EF⊥OC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一張三角形紙片ABC(如圖甲),其中AB=AC.將紙片沿過(guò)點(diǎn)B的直線折疊,使點(diǎn)C落到AB邊上的E點(diǎn)處,折痕為BD(如圖乙).再將紙片沿過(guò)點(diǎn)E的直線折疊,點(diǎn)A恰好與點(diǎn)D重合,折痕為EF(如圖丙).原三角形紙片ABC中,∠ABC的大小為______°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)B的坐標(biāo)為(3,0),與軸交于點(diǎn)C(0,-3),頂點(diǎn)為D.
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo).
(2)聯(lián)結(jié)AC,BC,求∠ACB的正切值.
(3)點(diǎn)P是x軸上一點(diǎn),是否存在點(diǎn)P使得△PBD與△CAB相似,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(4)M是拋物線上一點(diǎn),點(diǎn)N在軸,是否存在點(diǎn)N,使得以點(diǎn)A,C,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,排球運(yùn)動(dòng)員站在點(diǎn)處練習(xí)發(fā)球,將球從點(diǎn)正上方的處發(fā)出,把球看成點(diǎn),其運(yùn)行的高度與運(yùn)行的水平距離滿足關(guān)系式.已知球網(wǎng)與點(diǎn)的水平距離為,高度為,球場(chǎng)的邊界距點(diǎn)的水平距離為.
()求與的關(guān)系式(不要求寫出自變量的取值范圍).
()球能否越過(guò)球網(wǎng)?球會(huì)不會(huì)出界?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:△ABC的周長(zhǎng)為30cm,把△ABC的邊AC對(duì)折,使頂點(diǎn)C和點(diǎn)A重合,折痕交BC邊于點(diǎn)D,交AC邊與點(diǎn)E,連接AD,若AE=4cm,則△ABD的周長(zhǎng)是( )
A. 22cmB. 20cmC. 18cmD. 15cm
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com