【題目】如圖,△ABC的頂點(diǎn)坐標(biāo)分別為A(4,3),B(3,1),C(1,2),△A1B1C1與△ABC關(guān)于原點(diǎn)對稱.
(1)寫出A1,B1,C1的坐標(biāo);
(2)在所給的平面直角坐標(biāo)系中畫出△A1B1C1;
(3)若點(diǎn)A(4,3)與點(diǎn)M(a﹣2,b﹣4)關(guān)于原點(diǎn)對稱,求關(guān)于x的方程的解.
【答案】(1)A1,B1,C1的坐標(biāo)為(﹣4,﹣3)、(﹣3,﹣1)、(﹣1,﹣2);(2)如圖:即為△A1B1C1.見解析;(3)關(guān)于x的方程的解為﹣或.
【解析】
(1)根據(jù)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)特點(diǎn)即可求解;
(2)根據(jù)(1)所得坐標(biāo)即可畫出圖形;
(3)根據(jù)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)特點(diǎn)求出a、b的值,進(jìn)一步解方程即可.
(1)根據(jù)題意,得
A1(﹣4,﹣3),B1(﹣3,﹣1),C1(﹣1,﹣2),
答:A1,B1,C1的坐標(biāo)為(﹣4,﹣3)、(﹣3,﹣1)、(﹣1,﹣2)
(2)如圖:即為△A1B1C1.
(3)a﹣2=﹣4,b﹣4=﹣3,
解得a=﹣2,b=1.
所以方程為:﹣=x2
整理,得
6x2﹣7x﹣5=0,
解得x1=﹣,x2=.
答:關(guān)于x的方程的解為﹣或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一次函數(shù)y=kx+m的圖象經(jīng)過二次函數(shù)y=ax2+bx+c的頂點(diǎn),我們則稱這兩個函數(shù)為“丘比特函數(shù)組”
(1)請判斷一次函數(shù)y=﹣3x+5和二次函數(shù)y=x2﹣4x+5是否為“丘比特函數(shù)組”,并說明理由.
(2)若一次函數(shù)y=x+2和二次函數(shù)y=ax2+bx+c為“丘比特函數(shù)組”,已知二次函數(shù)y=ax2+bx+c頂點(diǎn)在二次函數(shù)y=2x2﹣3x﹣4圖象上并且二次函數(shù)y=ax2+bx+c經(jīng)過一次函數(shù)y=x+2與y軸的交點(diǎn),求二次函數(shù)y=ax2+bx+c的解析式;
(3)當(dāng)﹣3≤x≤﹣1時,二次函數(shù)y=x2﹣2x﹣4的最小值為a,若“丘比特函數(shù)組”中的一次函數(shù)y=2x+3和二次函數(shù)y=ax2+bx+c(b、c為參數(shù))相交于PQ兩點(diǎn)請問PQ的長度為定值嗎?若是,請求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形OABC的一邊OA在x軸的負(fù)半軸上,O是坐標(biāo)原點(diǎn),tan∠AOC=,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)C,與AB交于點(diǎn)D,若△COD的面積為20,則k的值等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第x(1≤x≤90)天的售價與銷售量的相關(guān)信息如下表:
時間x(天) | 1≤x<50 | 50≤x≤90 |
售價(元/件) | x+40 | 90 |
每天銷量(件) | 200-2x |
已知該商品的進(jìn)價為每件30元,設(shè)銷售該商品的每天利潤為y元[
(1)求出y與x的函數(shù)關(guān)系式;
(2)問銷售該商品第幾天時,當(dāng)天銷售利潤最大,最大利潤是多少?
(3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸是x=1,現(xiàn)給出下列4個結(jié)論:①abc>0,②2a﹣b=0,③4a+2b+c>0,④b2﹣4ac>0,其中錯誤的結(jié)論有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)A在x軸的負(fù)半軸上,點(diǎn)B的坐標(biāo)為(﹣2,﹣4),拋物線y=ax2+bx的對稱軸為x=﹣5,該拋物線經(jīng)過點(diǎn)A、B,點(diǎn)E是AB與對稱軸x=﹣5的交點(diǎn).
(1)如圖1,點(diǎn)P為直線AB下方的拋物線上的任意一點(diǎn),在對稱軸x=﹣5上有一動點(diǎn)M,當(dāng)△ABP的面積最大時,求|PM﹣OM|的最大值以及點(diǎn)P的坐標(biāo).
(2)如圖2,把△ABO沿射線BA方向平移,得到△CDF,其中點(diǎn)C、D、F分別是點(diǎn)A、B、O的對應(yīng)點(diǎn),且點(diǎn)F與點(diǎn)O不重合,平移過程中,是否存在這樣的點(diǎn)F,使得以點(diǎn)A、E、F為頂點(diǎn)的三角形為等腰三角形?若存在,直接寫出點(diǎn)F的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB=AC=10,BC=12,點(diǎn)E是弧BC的中點(diǎn).
(1)過點(diǎn)E作BC的平行線交AB的延長線于點(diǎn)D,求證:DE是⊙O的切線.
(2)點(diǎn)F是弧AC的中點(diǎn),求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,MN為⊙O的直徑,ME是⊙O的弦,MD垂直于過點(diǎn)E的直線DE,垂足為點(diǎn)D,且ME平分∠DMN.
求證:(1)DE是⊙O的切線;
(2)ME2=MDMN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,并且關(guān)于x的一元二次方程ax2+bx+c﹣m=0有兩個不相等的實(shí)數(shù)根,下列結(jié)論:
①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,
其中,正確的個數(shù)有( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com