【題目】聯(lián)想三角形外心的概念,我們可引入如下概念. 定義:到三角形的兩個(gè)頂點(diǎn)距離相等的點(diǎn),叫做此三角形的準(zhǔn)外心.
舉例:如圖1,若PA=PB,則點(diǎn)P為△ABC的準(zhǔn)外心.
應(yīng)用:如圖2,CD為等邊三角形ABC的高,準(zhǔn)外心P在高CD上,且PD= AB,求∠APB的度數(shù).
探究:已知△ABC為直角三角形,斜邊BC=5,AB=3,準(zhǔn)外心P在AC邊上,試探究PA的長(zhǎng).
【答案】應(yīng)用:解:①若PB=PC,連接PB,則∠PCB=∠PBC, ∵CD為等邊三角形的高,
∴AD=BD,∠PCB=30°,
∴∠PBD=∠PBC=30°,
∴PD= DB= AB,
與已知PD= AB矛盾,∴PB≠PC,
②若PA=PC,連接PA,同理可得PA≠PC,
③若PA=PB,由PD= AB,得PD=BD,
∴∠APD=45°,
故∠APB=90°;
探究:解:∵BC=5,AB=3,
∴AC= = =4,
① 若PB=PC,設(shè)PA=x,則x2+32=(4﹣x)2 ,
∴x= ,即PA= ,
②若PA=PC,則PA=2,
③若PA=PB,由圖知,在Rt△PAB中,不可能.
故PA=2或 .
【解析】應(yīng)用:連接PA、PB,根據(jù)準(zhǔn)外心的定義,分①PB=PC,②PA=PC,③PA=PB三種情況利用等邊三角形的性質(zhì)求出PD與AB的關(guān)系,然后判斷出只有情況③是合適的,再根據(jù)等腰直角三角形的性質(zhì)求出∠APB=45°,然后即可求出∠APB的度數(shù);探究:先根據(jù)勾股定理求出AC的長(zhǎng)度,根據(jù)準(zhǔn)外心的定義,分①PB=PC,②PA=PC,③PA=PB三種情況,根據(jù)三角形的性質(zhì)計(jì)算即可得解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,則BE與DF有何位置關(guān)系?試說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中.AB=AC.∠BAC=36°.BD是∠ABC的平分線,交AC于點(diǎn)D,E是AB的中點(diǎn),連接ED并延長(zhǎng),交BC的延長(zhǎng)線于點(diǎn)F,連接AF.求證:(1)EF⊥AB; (2)△ACF為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下面的證明:如圖,點(diǎn)D,E,F分別是三角形ABC的邊BC,CA,AB上的點(diǎn),連接DE,DF,DE∥AB,∠BFD=∠CED,連接BE交DF于點(diǎn)G,求證:∠EGF+∠AEG=180°.
證明:∵DE∥AB(已知),
∴∠A=∠CED( )
又∵∠BFD=∠CED(已知),
∴∠A=∠BFD( )
∴DF∥AE( )
∴∠EGF+∠AEG=180°( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB=30°,∠AOB內(nèi)有一定點(diǎn)P,且OP=12,在OA上有一點(diǎn)Q,OB上有一點(diǎn)R,若△PQR周長(zhǎng)最小,則最小周長(zhǎng)是_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的直角坐標(biāo)系中,每個(gè)小方格都是邊長(zhǎng)為1的正方形,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)A的坐標(biāo)是(﹣3,﹣1).
(1)將△ABC關(guān)于x軸對(duì)稱得到△A1B1C1,畫出△A1B1C1,并寫出點(diǎn)B1的坐標(biāo);
(2)把△A1B1C1平移,使點(diǎn)B1平移到B2(3,4),請(qǐng)作出△A1B1C1平移后的△A2B2C2,并寫出A2的坐標(biāo);
(3)已知△ABC中有一點(diǎn)D(a,b),求△A2B2C2中的對(duì)應(yīng)點(diǎn)D2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E在線段CD上,AE,BE分別平分∠DAB和∠CBA,∠AEB=90°,設(shè)AD=x,BC=y(tǒng),且(x-3)2+|y-4|=0.
(1)求AD和BC的長(zhǎng);
(2)你認(rèn)為AD和BC有怎樣的位置關(guān)系?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖,點(diǎn)A、B、C、D在一條直線上,填寫下列空格:
因?yàn)椤?/span>1=∠E(已知),所以______ // ______ .
因?yàn)?/span>CE//DF(已知),所以∠1=∠ ______ ,所以∠E=∠ ______ .
(2)說(shuō)出(1)的推理中應(yīng)用了哪兩個(gè)互逆的真命題?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com