【題目】一列快車從甲地勻速駛往乙地,一列慢車從乙地勻速駛往甲地,兩車同時出發(fā),快車到達乙地后,快車停止運動,慢車繼續(xù)以原速勻速駛往甲地,直至慢車到達甲地為止,設慢車行駛的時間為t(h),兩車之間的距離為s(km),圖中的折線表示s與t之間的函數關系.根據圖象提供的信息有下列說法:①甲、乙兩地之間的距離為900km;②行駛4h兩車相遇;③快車的速度為150km/h;④行駛6h兩車相距400km;⑤相遇時慢車行駛了240km;⑥快車共行駛了6h.其中符合圖象描述的說法有( )個.
A.3
B.4
C.5
D.6
科目:初中數學 來源: 題型:
【題目】如圖,小山崗的斜坡AC的坡角α=45°,在與山腳C距離200米的D處,測得山頂A的仰角為26.6°,小山崗的高AB約為(結果取整數,參考數據:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50)( )
A.164m
B.178m
C.200m
D.1618m
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在如圖所示的棱長為1的正方體中,A,B,C,D,E是正方體的頂點,M是棱CD的中點.動點P從點D出發(fā),沿著D→A→B的路線在正方體的棱上運動,運動到點B停止運動.設點P運動的路程是x,y=PM+PE,則y關于x的函數圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某農莊計劃在30畝空地上全部種植蔬菜和水果,菜農小張和果農小李分別承包了種植蔬菜和水果的任務.小張種植每畝蔬菜的工資y(元)與種植面積m(畝)之間的函數如圖①所示,小李種植水果所得報酬z(元)與種植面積n(畝)之間函數關系如圖②所示.
(1)如果種植蔬菜20畝,則小張種植每畝蔬菜的工資是元,小張應得的工資總額是元,此時,小李種植水果畝,小李應得的報酬是元;
(2)當10<n≤30時,求z與n之間的函數關系式;
(3)設農莊支付給小張和小李的總費用為w(元),當10<m≤30時,求w與m之間的函數關系式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點D,AD=18,點E在AC上且CE= AC,連接BE,與AD相交于點F.若BE=15,則△DBF的周長是
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若拋物線y=ax2+bx+c如圖所示,下列四個結論:
①abc<0;②b﹣2a<0;③a﹣b+c<0;④b2﹣4ac>0.
其中正確結論的個數是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC,AB=BC,以AB為直徑的圓交AC于點D,過點D的⊙O的切線交BC于點E.若CD=5,CE=4,則⊙O的半徑是( )
A.3
B.4
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:如果一個 與 的函數圖像經過平移后能與某反比例函數的圖像重合,那么稱這個函數是 與 的“反比例平移函數”.
例如: 的圖像向左平移2個單位,再向下平移1個單位得到 的圖像,則 是 與 的“反比例平移函數”.
(1)若矩形的兩邊分別是2cm、3cm,當這兩邊分別增加 cm、 cm后,得到的新矩形的面積為8 ,求 與 的函數表達式,并判斷這個函數是否為“反比例平移函數”.
(2)如圖,在平面直角坐標系中,點O為原點,矩形OABC的頂點A、C的坐標分別為(9,0)、(0,3) .點D是OA的中點,連接OB、CD交于點E,“反比例平移函數” 的圖像經過B、E兩點.則這個“反比例平移函數”的表達式為;這個“反比例平移函數”的圖像經過適當的變換與某一個反比例函數的圖像重合,請寫出這個反比例函數的表達式 .
(3)在(2)的條件下, 已知過線段BE中點的一條直線 交這個“反比例平移函數”圖像于P、Q兩點(P在Q的右側),若B、E、P、Q為頂點組成的四邊形面積為16,請求出點P的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com