【題目】已知,m,n是一元二次方程x2+4x+3=0的兩個實(shí)數(shù)根,且|m|<|n|,拋物線y=x2+bx+c的圖象經(jīng)過點(diǎn)A(m,0),B(0,n),如圖所示.
(1)求這個拋物線的解析式;
(2)設(shè)(1)中的拋物線與x軸的另一個交點(diǎn)為C,拋物線的頂點(diǎn)為D,試求出點(diǎn)C,D的坐標(biāo),并判斷△BCD的形狀.
【答案】(1)y=x2-2x-3;(2)C(3,0),D(1,-4),△BCD是直角三角形.
【解析】
(1)先解一元二次方程,然后用待定系數(shù)法求出拋物線解析式;
(2)先解方程求出拋物線與x軸的交點(diǎn),再判斷出△BOC和△BED都是等腰直角三角形,從而得到結(jié)論.
(1)∵x2+4x+3=0,∴x1=﹣1,x2=﹣3.
∵m,n是一元二次方程x2+4x+3=0的兩個實(shí)數(shù)根,且|m|<|n|,∴m=﹣1,n=﹣3.
∵拋物線y=x2+bx+c的圖象經(jīng)過點(diǎn)A(m,0),B(0,n),∴,∴,∴拋物線解析式為y=x2﹣2x﹣3;
(2)令y=0,則x2﹣2x﹣3=0,∴x1=﹣1,x2=3,∴C(3,0).
∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴頂點(diǎn)坐標(biāo)D(1,﹣4).
過點(diǎn)D作DE⊥y軸.
∵OB=OC=3,∴BE=DE=1,∴△BOC和△BED都是等腰直角三角形,∴∠OBC=∠DBE=45°,∴∠CBD=90°,∴△BCD是直角三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,(n+1)個邊長為2的等邊三角形△B1AC1,△B2C1C2、△B2C2C3,…,△Bn+1CnCn+1有一條邊在同一直線上,設(shè)△B2D1C1的面積為S1,△B3D2C2的面積為S2,△B4D3C3的面積為S3,…,△Bn+1DnCn的面積為Sn,則S2016=___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,BC=6cm. 射線AG//BC,點(diǎn)E從點(diǎn)A出發(fā)沿射線AG以1cm/s的速度運(yùn)動,同時點(diǎn)F從點(diǎn)B出發(fā)沿射線BC以2cm/s的速度運(yùn)動,設(shè)運(yùn)動時間為t(s).
(1)連接EF,當(dāng)EF經(jīng)過AC邊的中點(diǎn)D時,求證:△ADE≌△CDF;
(2)填空:當(dāng)t為_________s時,四邊形ACFE是菱形;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C1:y1=a(x﹣h)2+2,直線1:y2=kx﹣kh+2(k≠0).
(1)求證:直線l恒過拋物線C的頂點(diǎn);
(2)若a>0,h=1,當(dāng)t≤x≤t+3時,二次函數(shù)y1=a(x﹣h)2+2的最小值為2,求t的取值范圍.
(3)點(diǎn)P為拋物線的頂點(diǎn),Q為拋物線與直線l的另一個交點(diǎn),當(dāng)1≤k≤3時,若線段PQ(不含端點(diǎn)P,Q)上至少存在一個橫坐標(biāo)為整數(shù)的點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,對于任意實(shí)數(shù),,當(dāng)時,滿足的是( 。
A. y=﹣3x+2 B. y=2x+1 C. y=2x2+1 D. y=﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八(2)班組織了一次經(jīng)典誦讀比賽,甲、乙兩隊(duì)各10人的比賽成績?nèi)缦卤?10分制):
甲 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲隊(duì)成績的中位數(shù)是 分,乙隊(duì)成績的眾數(shù)是 分;
(2)計(jì)算乙隊(duì)的平均成績和方差;
(3)已知甲隊(duì)成績的方差是1.4,則成績較為整齊的是 隊(duì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,.點(diǎn)從點(diǎn) 出發(fā),沿著運(yùn)動,速度為個單位/,在點(diǎn)運(yùn)動的過程中,以為圓心的圓始終與斜邊相切,設(shè)⊙的面積為,點(diǎn)的運(yùn)動時間為()().
(1)當(dāng)時, ;(用含的式子表示)
(2)求與的函數(shù)表達(dá)式;
(3)在⊙P運(yùn)動過程中,當(dāng)⊙P與三角形ABC的另一邊也相切時,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+x+6及一次函數(shù)y=x+m,將該二次函數(shù)在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個新圖象(如圖所示),當(dāng)直線y=x+m與這個新圖象有四個交點(diǎn)時,m的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,
(1)求直線的函數(shù)解析式;
(2)如圖2,點(diǎn)在線段(不包括,兩點(diǎn))上,連接與軸交于點(diǎn),連接.、的垂直平分線交于點(diǎn),連接并延長到點(diǎn),使,作軸于,連結(jié).求證:;
(3)在(2)的條件下,當(dāng)的邊時,求點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com