【題目】如圖,在中,,,,點從點開始沿邊向點以的速度移動,點從點開始沿邊向點以的速度移動.
(1)如果分別從同時出發(fā),那么幾秒后,的面積等于?
(2)如果分別從同時出發(fā),的面積能否等于?
(3)如果分別從同時出發(fā),那么幾秒后,的長度等于?
【答案】(1)后,的面積等于;(2)的面積不能等于.理由見解析;(3)后,的長度等于.
【解析】
(1)設經(jīng)過x秒鐘,△PBQ的面積等于4平方厘米,根據(jù)點P從A點開始沿AB邊向點B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動,表示出BP和BQ的長可列方程求解;
(2)設經(jīng)過x秒鐘,△PBQ的面積等于4平方厘米,根據(jù)點P從A點開始沿AB邊向點B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動,表示出BP和BQ的長可列方程求解;
(3)設經(jīng)過x秒,點P,Q之間的距離為5cm,根據(jù)勾股定理列式求解即可;
設后,,.
(1)根據(jù)三角形的面積公式列方程,
得:.
解得:,.
當時,,不合題意,舍去.
所以后,的面積等于
(2)的面積不能等于.
理由:根據(jù)三角形的面積公式列方程,
得:,
整理,得:.
因為,
所以的面積不能等于.
(3)根據(jù)勾股定理列方程,
得:.
解得:,(不符合題意,舍去).
所以后,的長度等于
科目:初中數(shù)學 來源: 題型:
【題目】在△OAB,△OCD中,OA=OB,OC=OD,∠AOB=∠COD=90°.
(1)若O、C、A在一條直線上,連AD、BC,分別取AD、BC的中點M、N如圖(1),求出線段MN、AC之間的數(shù)量關系;
(2)若將△OCD繞O旋轉到如圖(2)的位置,連AD、BC,取BC的中點M,請?zhí)骄烤段OM、AD之間的關系,并證明你的結論;
(3)若將△OCD由圖(1)的位置繞O順時針旋轉角度α(0°<α<360°),且OA=4,OC=2,是否存在角度α使得OC⊥BC?若存在,請直接寫出此時△ABC的面積;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】通過類比聯(lián)想、引申拓展研究典型題目,可達到解一題知一類的目的.下面是一個案例.
原題:如圖①,點分別在正方形的邊上,,連接,則,試說明理由.
(1)思路梳理
因為,所以把繞點逆時針旋轉90°至,可使與 重合.因為,所以,點共線.
根據(jù) ,易證 ,得.請證明.
(2)類比引申
如圖②,四邊形中,,,點分別在邊上,.若都不是直角,則當
(3)聯(lián)想拓展
如圖③,在中,,點均在邊上,且.猜想應滿足的等量關系,并寫出證明過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖所示.在△ABC中,∠B=90°,AB=5cm,BC=7cm.點P從點A開始沿AB邊向點B以1cm/s的速度移動,點Q從點B開始沿BC邊向點C以2cm/s的速度移動,當其中一點達到終點后,另外一點也隨之停止運動.
(1)如果P,Q分別從A,B同時出發(fā),那么幾秒后,△PBQ的面積等于4cm2?
(2)如果P,Q分別從A,B同時出發(fā),那么幾秒后,PQ的長度等于5cm?
(3)在(1)中,△PQB的面積能否等于7cm2?說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】商場某種商品平均每天可銷售30件,每件盈利500元,為了盡快減少庫存,商場決定采取適當?shù)慕祪r措施.經(jīng)調查發(fā)現(xiàn),每件商品每降價10元,商場每天可多售出2件.設每件商品降價x元(x是10的整數(shù)倍),據(jù)此信息,請回答:
(1)商場日銷量增加 件,每件商品盈利 元;(用含x的代數(shù)式表示).
(2)在上述條件不變且銷售正常的情況下,每件商品降價多少元時,商場日盈利可達到21000元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場老板對一種新上市商品的銷售情況進行記錄,已知這種商品進價為每件40元,經(jīng)過記錄分析發(fā)現(xiàn),當銷售單價在40元至90元之間(含40元和90元)時,每月的銷售量y(件)與銷售單價x(元)之間的關系可近似地看作一次函數(shù),其圖象如圖所示.
(1)求y與x的函數(shù)關系式.
(2)設商場老板每月獲得的利潤為P(元),求P與x之間的函數(shù)關系式;
(3)如果想要每月獲得2400元的利潤,那么銷售單價應定為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系xOy中,二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點.
(1)求這個二次函數(shù)的解析式;
(2)在這條拋物線的對稱軸右邊的圖象上有一點B,使△AOB的面積等于6,求點B的坐標;
(3)對于(2)中的點B,在此拋物線上是否存在點P,使∠POB=90°?若存在,求出點P的坐標,并求出△POB的面積;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在菱形ABCD中,∠BAD=,E為對角線AC上的一點(不與A,C重合),將射線EB繞點E順時針旋轉角之后,所得射線與直線AD交于F點.試探究線段EB與EF的數(shù)量關系.
小宇發(fā)現(xiàn)點E的位置,和的大小都不確定,于是他從特殊情況開始進行探究.
(1)如圖1,當==90°時,菱形ABCD是正方形.小宇發(fā)現(xiàn),在正方形中,AC平分∠BAD,作EM⊥AD于M,EN⊥AB于N.由角平分線的性質可知EM=EN,進而可得,并由全等三角形的性質得到EB與EF的數(shù)量關系為 .
(2)如圖2,當=60°,=120°時,
①依題意補全圖形;
②請幫小宇繼續(xù)探究(1)的結論是否成立.若成立,請給出證明;若不成立,請舉出反例說明;
(3)小宇在利用特殊圖形得到了一些結論之后,在此基礎上對一般的圖形進行了探究,設∠ABE=,若旋轉后所得的線段EF與EB的數(shù)量關系滿足(1)中的結論,請直接寫出角,,滿足的關系: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形中,,,,,將繞點從處開始按順時針方向旋轉,交邊(或)于點,交邊(或)于點,當旋轉至處時,停止旋轉.
(1)特殊情形:如圖2,發(fā)現(xiàn)當過點時,PN也恰巧過點,此時 (填“≌”或“∽”);
(2)類比探究:如圖3,在旋轉過程中,的值是否為定值?若是,請求出該定值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com