【題目】在Rt△ABC中,∠BAC=90°,過點B的直線MN∥AC,D為BC邊上一點,連接AD,作DE⊥AD交MN于點E,連接AE.

(1)如圖①,當∠ABC=45°時,求證:AD=DE;
(2)如圖②,當∠ABC=30°時,線段AD與DE有何數(shù)量關系?并請說明理由;
(3)當∠ABC=α時,請直接寫出線段AD與DE的數(shù)量關系.(用含α的三角函數(shù)表示)

【答案】
(1)

證明:如圖1,過點D作DF⊥BC,交AB于點F,

則∠BDE+∠FDE=90°,

∵DE⊥AD,

∴∠FDE+∠ADF=90°,

∴∠BDE=∠ADF,

∵∠BAC=90°,∠ABC=45°,

∴∠C=45°,

∵MN∥AC,

∴∠EBD=180°﹣∠C=135°,

∵∠BFD=45°,DF⊥BC,

∴∠BFD=45°,BD=DF,

∴∠AFD=135°,

∴∠EBD=∠AFD,

在△BDE和△FDA中

,

∴△BDE≌△FDA(ASA),

∴AD=DE;


(2)

解:DE=AD,

理由:如圖2,過點D作DG⊥BC,交AB于點G,

則∠BDE+∠GDE=90°,

∵DE⊥AD,

∴∠GDE+∠ADG=90°,

∴∠BDE=∠ADG,

∵∠BAC=90°,∠ABC=30°,

∴∠C=60°,

∵MN∥AC,

∴∠EBD=180°﹣∠C=120°,

∵∠ABC=30°,DG⊥BC,

∴∠BGD=60°,

∴∠AGD=120°,

∴∠EBD=∠AGD,

∴△BDE∽△GDA,

在Rt△BDG中,

=tan30°=,

∴DE=AD;


(3)

解:AD=DEtanα;

理由:如圖2,

∠BDE+∠GDE=90°,

∵DE⊥AD,

∴∠GDE+∠ADG=90°,

∴∠BDE=∠ADG,

∵∠EBD=90°+α,∠AGD=90°+α,

∴∠EBD=∠AGD,

∴△EBD∽△AGD,

在Rt△BDG中,

=tanα,則=tanα,

∴AD=DEtanα.


【解析】(1)首先過點D作DF⊥BC,交AB于點F,得出∠BDE=∠ADF,以及∠EBD=∠AFD,再得出△BDE≌△FDA(ASA),求出即可;
(2)首先過點D作DG⊥BC,交AB于點G,進而得出∠EBD=∠AGD,證出△BDE∽△GDA即可得出答案;
(3)首先過點D作DG⊥BC,交AB于點G,進而得出∠EBD=∠AGD,證出△BDE∽△GDA即可得出答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為響應國家的“一帶一路”經(jīng)濟發(fā)展戰(zhàn)略,樹立品牌意識,我市質檢部門對A、B、C、D四個廠家生產(chǎn)的同種型號的零件共2000件進行合格率檢測,通過檢測得出C廠家的合格率為95%,并根據(jù)檢測數(shù)據(jù)繪制了如圖1、圖2兩幅不完整的統(tǒng)計圖.

(1)抽查D廠家的零件為 件,扇形統(tǒng)計圖中D廠家對應的圓心角為;
(2)抽查C廠家的合格零件為 件,并將圖1補充完整;
(3)通過計算說明合格率排在前兩名的是哪兩個廠家;
(4)若要從A、B、C、D四個廠家中,隨機抽取兩個廠家參加德國工業(yè)產(chǎn)品博覽會,請用“列表法”或“畫樹形圖”的方法求出(3)中兩個廠家同時被選中的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,∠QPN的頂點P在正方形ABCD兩條對角線的交點處,∠QPN=α,將∠QPN繞點P旋轉,旋轉過程中∠QPN的兩邊分別與正方形ABCD的邊AD和CD交于點E和點F(點F與點C,D不重合).

(1)如圖①,當α=90°時,DE,DF,AD之間滿足的數(shù)量關系是_____;
(2)如圖②,將圖①中的正方形ABCD改為∠ADC=120°的菱形,其他條件不變,當α=60°時,(1)中的結論變?yōu)镈E+DF=AD,請給出證明;
(3)在(2)的條件下,若旋轉過程中∠QPN的邊PQ與射線AD交于點E,其他條件不變,探究在整個運動變化過程中,DE,DF,AD之間滿足的數(shù)量關系,直接寫出結論,不用加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了豐富學生的體育生活,學校準備購進一些籃球和足球,已知用900元購買籃球的個數(shù)比購買足球的個數(shù)少1個,足球的單價為籃球單價的0.9倍.
(1)求籃球、足球的單價分別為多少元?
(2)如果計劃用5000元購買籃球、足球共52個,那么至少要購買多少個足球?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將△ABC在網(wǎng)格中(網(wǎng)格中每個小正方形的邊長均為1)依次進行位似變換、軸對稱變換和平移變換后得到△A3B3C3

(1)△ABC與△A1B1C1的位似比等于  ;
(2)在網(wǎng)格中畫出△A1B1C1關于y軸的軸對稱圖形△A2B2C2
(3)請寫出△A3B3C3是由△A2B2C2怎樣平移得到的?
(4)設點P(x,y)為△ABC內一點,依次經(jīng)過上述三次變換后,點P的對應點的坐標為  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學數(shù)學興趣小組為了解本校學生對電視節(jié)目的喜愛情況,隨機調查了部分學生最喜愛哪一類節(jié)目 (被調查的學生只選一類并且沒有不選擇的),并將調查結果制成了如下的兩個統(tǒng)計圖(不完整).請你根據(jù)圖中所提供的信息,完成下列問題:

(1)求本次調查的學生人數(shù);
(2)請將兩個統(tǒng)計圖補充完整,并求出新聞節(jié)目在扇形統(tǒng)計圖中所占圓心角的度數(shù);
(3)若該中學有2000名學生,請估計該校喜愛電視劇節(jié)目的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+x+c的圖象與y軸交于點A(0,4),與x軸交于點B、C,點C坐標為(8,0),連接AB、AC.

(1)請直接寫出二次函數(shù)y=ax2+x+c的表達式;
(2)判斷△ABC的形狀,并說明理由;
(3)若點N在x軸上運動,當以點A、N、C為頂點的三角形是等腰三角形時,請直接寫出此時點N的坐標;
(4)若點N在線段BC上運動(不與點B、C重合),過點N作NM∥AC,交AB于點M,當△AMN面積最大時,求此時點N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】過雙曲線x2 =1的右支上一點P,分別向圓C1:(x+4)2+y2=4和圓C2:(x﹣4)2+y2=1作切線,切點分別為M,N,則|PM|2﹣|PN|2的最小值為(
A.10
B.13
C.16
D.19

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD是矩形,cot∠ADB= ,AB=16.點E在射線BC上,點F在線段BD上,且∠DEF=∠ADB.

(1)求線段BD的長;
(2)設BE=x,△DEF的面積為y,求y關于x的函數(shù)關系式,并寫出函數(shù)定義域;
(3)當△DEF為等腰三角形時,求線段BE的長.

查看答案和解析>>

同步練習冊答案