【題目】如圖,已知各頂點的坐標(biāo)分別為,

1)畫出以點B為旋轉(zhuǎn)中心,按順時針方向旋轉(zhuǎn)后得到的;

2)將先向右平移5個單位長度,再向上平移3個單位長度,得到

①在圖中畫出,并寫出點A的對應(yīng)點的坐標(biāo);

②如果將看成是由經(jīng)過一次平移得到的,請指出這一平移的平移方向和平移距離.

【答案】1)詳見解析;(2)①圖詳見解析,A22,-1);②由AA2的方向,平移的距離是個單位長度.

【解析】

1)根據(jù)旋轉(zhuǎn)的性質(zhì)即可作圖;(2)①根據(jù)平移的性質(zhì)畫出圖形即可;②連接A A2,根據(jù)勾股定理求出A A2的長,進而可得出結(jié)論.

1)如圖所示,即為所求;

2)①如圖所示,即為所求,A22-1);

②連接AA2,由勾股定理求得AA2= ,

∴如果將看成是由經(jīng)過一次平移得到的,那么這一平移的平移方向是由AA2的方向,平移的距離是個單位長度.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個3×3的方格中填寫了9個數(shù)字,使得每行、每列、每條對角線上的三個數(shù)之和相等,得到的3×3的方格稱為一個三階幻方.

1)在圖1中空格處填上合適的數(shù)字,使它構(gòu)成一個三階幻方;

2)如圖2的方格中填寫了一些數(shù)和字母,當(dāng)x+y的值為多少時,它能構(gòu)成一個三階幻方.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣2x2+8x﹣6與x軸交于點A、B,把拋物線在x軸及其上方的部分記作C1,將C1向右平移得C2,C2與x軸交于點B,D.若直線y=x+m與C1、C2共有3個不同的交點,則m的取值范圍是( 。

A. ﹣2<m< B. ﹣3<m<﹣ C. ﹣3<m<﹣2 D. ﹣3<m<﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,P1、P2是反比例函數(shù)y=(k>0)在第一象限圖象上的兩點,點A1的坐標(biāo)為(4,0).若△P1OA1與△P2A1A2均為等腰直角三角形,其中點P1、P2為直角頂點.
(1)直接寫出反比例函數(shù)的解析式.
(2)①求P2的坐標(biāo).

②根據(jù)圖象直接寫出在第一象限內(nèi),當(dāng)x滿足什么條件時,經(jīng)過點P1、P2的一次函數(shù)的函數(shù)值大于反比例函數(shù)y=的函數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC是邊長為3的等邊三角形,點D是邊BC上的一點,且BD1,以AD為邊作等邊△ADE,過點EEFBC,交AC于點F,連接BF,則下列結(jié)論中ABD≌△BCF;四邊形BDEF是平行四邊形;S四邊形BDEF;SAEF.其中正確的有(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形ABC的邊長為6,在AC,BC邊上各取一點E,F(xiàn),連接AF,BE相交于點P,且AE=CF.

(1)求證:AF=BE,并求∠FPB的度數(shù);

(2)AE=2,試求AP·AF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】元旦期間,平價商場對該商場商品進行如下的優(yōu)惠促銷活動:

打折前一次性購物總金額

優(yōu)惠措施

小于等于 400

不優(yōu)惠

超過 400 元,但不超過 600

按售價打九折

超過 600

其中 600 元部分八折優(yōu)惠,超過 600 元的部分打六折優(yōu)惠

按上述優(yōu)惠條件,若小華一次性購買售價為 80 /件的商品 n 件時,實際付款 504 元, n=_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某同學(xué)在大樓AD的觀光電梯中的E點測得大樓BC樓底C點的俯角為45°,此時該同學(xué)距地面高度AE20米,電梯再上升5米到達D點,此時測得大樓BC樓頂B點的仰角為37°,求大樓的高度BC.(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,中,,點為邊上一點,于點,點中點,點中點,的延長線交于點,.

1)求證:;

2)求的大;

3)如圖②,過點的延長線于點,求證:四邊形為矩形.

查看答案和解析>>

同步練習(xí)冊答案