【題目】在陽光體育活動時間,小亮、小瑩、小芳到學(xué)校乒乓球室打乒乓球,當(dāng)時只有一副空球桌,他們只能選兩人打第一場.

1)如果確定小亮打第一場,再從其余兩人中隨機選取一人打第一場,選中小瑩的概率是________

2)如果確定小亮打第一場,用投擲硬幣的方法確定小瑩、小芳誰打第一場,并決定小亮做裁判,由小亮拋擲一枚硬幣,規(guī)定正面朝上小瑩勝,反面朝上小芳勝,最終勝兩局以上者(包括兩局)打第一場.小亮第一次投擲的結(jié)果是正面朝上,請用列表或畫樹狀圖的方法表示最后兩次投擲硬幣的所有情況,并求小芳打第一場的概率.

【答案】1;(2)列表見解析,

【解析】

1)直接根據(jù)概率的意義可得答案;

2)利用列表法列舉出所有的情況,然后根據(jù)概率的意義計算即可.

解:(1

2)最后兩次投擲硬幣的所有結(jié)果如下表

第三次的結(jié)果

第二次第結(jié)果

正正

正反

反正

反反

只有最后兩次投擲的結(jié)果都是反面朝上,小芳才能勝兩次,所以小芳打第一場的概率是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有紅、黃兩個布袋,紅布袋中有兩個完全相同的小球,分別標(biāo)有數(shù)字24.黃布袋中有三個完全相同的小球,分別標(biāo)有數(shù)字﹣2,﹣4和﹣6.小賢先從紅布袋中隨機取出一個小球,記錄其標(biāo)有的數(shù)字為x,再從黃布袋中隨機取出一個小球,記錄其標(biāo)有的數(shù)字為y,這樣就確定點M的一個坐標(biāo)為(xy

1)用列表或畫樹狀圖的方法寫出點M的所有可能坐標(biāo);

2)求點M落在雙曲線y上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個箱子內(nèi)有顆相同的球,將顆球分別標(biāo)示號碼,,今浩浩以每次從箱子內(nèi)取一顆球且取后放回的方式抽取,并預(yù)計取球次,現(xiàn)已取了次,取出的號碼依次為,,若每次取球時,任一顆球被取到的機會皆相等,且取出的號碼即為得分?jǐn)?shù),浩浩打算依計劃繼續(xù)從箱子取球次,則發(fā)生“這次得分的平均數(shù)在之間(含,)”的情形的概率為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角系中,點Ax軸正半軸上,點By軸正半軸上,∠ABO30°,AB2,以AB為邊在第一象限內(nèi)作等邊△ABC,反比例函數(shù)的圖象恰好經(jīng)過邊BC的中點D,邊AC與反比例函數(shù)的圖象交于點E

1)求反比例函數(shù)的解析式;

2)求點E的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,對角線BD所在的直線上有兩點E、F滿足BE=DF,連接AE、AF、CE、CF,如圖所示

(1)求證:△ABE≌△ADF;

(2)試判斷四邊形AECF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在一次數(shù)學(xué)興趣小組活動中,對一個數(shù)學(xué)問題作如下探究:

問題情境:(1)如圖1,四邊形中,,點邊的中點,連接并延長交的延長線于點,求證:(表示面積)

問題遷移:(2)如圖2:在已知銳角內(nèi)有一個定點.過點任意作一條直線分別交射線于點.小明將直線繞著點旋轉(zhuǎn)的過程中發(fā)現(xiàn),的面積存在最小值,請問當(dāng)直線在什么位置時,的面積最小,并說明理由.

實際應(yīng)用:(3)如圖3,若在道路之間有一村莊發(fā)生疫情,防疫部門計劃以公路和經(jīng)過防疫站的一條直線為隔離線,建立個面積最小的三角形隔離區(qū),若測得試求的面積.(結(jié)果保留根號)(參考數(shù)據(jù):)

拓展延伸:(4)如圖4,在平面直角坐標(biāo)系中,為坐標(biāo)原點,點的坐標(biāo)分別為,過點的直線與四邊形一組對邊相交,將四邊形分成兩個四邊形,求其中以點為頂點的四邊形面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,BC4,⊙P與△ABC的邊或邊的延長線相切.若⊙P半徑為2,△ABC的面積為5,則△ABC的周長為( )

A.8B.10C.13D.14

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】溫州茶山楊梅名揚中國,某公司經(jīng)營茶山楊梅業(yè)務(wù),以3萬元/噸的價格買入楊梅,包裝后直接銷售,包裝成本為1萬元/噸,它的平均銷售價格y(單位:萬元/噸)與銷售數(shù)量x2x10,單位:噸)之間的函數(shù)關(guān)系如圖所示.

1)若楊梅的銷售量為6噸時,它的平均銷售價格是每噸多少萬元?

2)當(dāng)銷售數(shù)量為多少時,該經(jīng)營這批楊梅所獲得的毛利潤(w)最大?最大毛利潤為多少萬元?(毛利潤=銷售總收入﹣進價總成本﹣包裝總費用)

3)經(jīng)過市場調(diào)查發(fā)現(xiàn),楊梅深加工后不包裝直接銷售,平均銷售價格為12萬元/噸.深加工費用y(單位:萬元)與加工數(shù)量x(單位:噸)之間的函數(shù)關(guān)系是yx+32x10).

當(dāng)該公司買入楊梅多少噸時,采用深加工方式與直接包裝銷售獲得毛利潤一樣?

該公司買入楊梅噸數(shù)在   范圍時,采用深加工方式比直接包裝銷售獲得毛利潤大些?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】黃石市在創(chuàng)建國家級文明衛(wèi)生城市中,綠化檔次不斷提升.某校計劃購進A,B兩種樹木共100棵進行校園綠化升級,經(jīng)市場調(diào)查:購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元.

(1)求A種,B種樹木每棵各多少元?

(2)因布局需要,購買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍.學(xué)校與中標(biāo)公司簽訂的合同中規(guī)定:在市場價格不變的情況下(不考慮其他因素),實際付款總金額按市場價九折優(yōu)惠,請設(shè)計一種購買樹木的方案,使實際所花費用最省,并求出最省的費用.

查看答案和解析>>

同步練習(xí)冊答案