【題目】如圖,在矩形紙片ABCD中,AB=2,AD=3,點(diǎn)E是AB的中點(diǎn),點(diǎn)F是AD邊上的一個(gè)動點(diǎn),將△AEF沿EF所在直線翻折,得到△A′EF,則A′C的長的最小值是

【答案】 ﹣1
【解析】解:連接CE,如圖所示.

根據(jù)折疊可知:A′E=AE= AB=1.

在Rt△BCE中,BE= AB=1,BC=3,∠B=90°,

∴CE= =

∵CE= ,A′E=1,

∴點(diǎn)A′在CE上時(shí),A′C取最小值,最小值為CE﹣A′E= ﹣1.

所以答案是: ﹣1.

【考點(diǎn)精析】認(rèn)真審題,首先需要了解矩形的性質(zhì)(矩形的四個(gè)角都是直角,矩形的對角線相等),還要掌握翻折變換(折疊問題)(折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、Bx軸上,ABBC,AOOB2,BC3

1)寫出點(diǎn)ABC的坐標(biāo).

2)如圖,過點(diǎn)BBDACy軸于點(diǎn)D,求∠CAB+BDO的大小.

3)如圖,在圖中,作AEDE分別平分∠CAB、∠ODB,求∠AED的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,D是BC延長線上的一點(diǎn),線段BD的垂直平分線EG交AB于點(diǎn)E,交BD于點(diǎn)G.

(1)當(dāng)∠B=30°時(shí),AE和EF有什么關(guān)系?請說明理由.

(2)當(dāng)點(diǎn)D在BC的延長線上(CD<BC)運(yùn)動時(shí),點(diǎn)E是否在線段AF的垂直平分線上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC是等腰三角形,頂角∠BAC=α(α<60°),D是BC邊上的一點(diǎn),連接AD,線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α到AE,過點(diǎn)E作BC的平行線,交AB于點(diǎn)F,連接DE,BE,DF.

(1)求證:BE=CD;
(2)若AD⊥BC,試判斷四邊形BDFE的形狀,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC為邊向外作正方形,其面積分別為S1、S2、S3 , 若S1=3,S3=9,則S2的值為( )

A.12
B.18
C.24
D.48

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)平面內(nèi),已知點(diǎn)的坐標(biāo)是,點(diǎn)的坐標(biāo)是

1)圖中點(diǎn)的坐標(biāo)是_______

2)點(diǎn)關(guān)于軸對稱的點(diǎn)的坐標(biāo)是_______

3)如果將點(diǎn)沿著與軸平行的方向向右平移2個(gè)單位得到點(diǎn),那么兩點(diǎn)之間的距離是__

4)圖中的面積是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=2x+6與反比例函數(shù)y= (k>0)的圖象交于點(diǎn)A(1,m),與x軸交于點(diǎn)B,平行于x軸的直線y=n(0<n<6)交反比例函數(shù)的圖象于點(diǎn)M,交AB于點(diǎn)N,連接BM.

(1)求m的值和反比例函數(shù)的表達(dá)式;
(2)直線y=n沿y軸方向平移,當(dāng)n為何值時(shí),△BMN的面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017年5月25日,中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會在貴陽會展中心開幕,博覽會設(shè)了編號為1~6號展廳共6個(gè),小雨一家計(jì)劃利用兩天時(shí)間參觀其中兩個(gè)展廳:第一天從6個(gè)展廳中隨機(jī)選擇一個(gè),第二天從余下的5個(gè)展廳中再隨機(jī)選擇一個(gè),且每個(gè)展廳被選中的機(jī)會均等.
(1)第一天,1號展廳沒有被選中的概率是;
(2)利用列表或畫樹狀圖的方法求兩天中4號展廳被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AB為直徑,∠BAC的平分線交⊙O于點(diǎn)D,過點(diǎn)D的切線分別交AB,AC的延長線于E,F(xiàn),連接BD.

(1)求證:AF⊥EF;
(2)若AC=6,CF=2,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊答案