善于不斷改進(jìn)學(xué)習(xí)方法的小迪發(fā)現(xiàn),對(duì)解題進(jìn)行回顧反思,學(xué)習(xí)效果更好.某一天小迪有20分鐘時(shí)間可用于學(xué)習(xí).假設(shè)小迪用于解題的時(shí)間(單位:分鐘)與學(xué)習(xí)收益量的關(guān)系如圖1所示,用于回顧反思的時(shí)間(單位:分鐘)與學(xué)習(xí)收益的關(guān)系如圖2所示(其中是拋物線的一部分,為拋物線的頂點(diǎn)),且用于回顧反思的時(shí)間不超過(guò)用于解題的時(shí)間.

(1)求小迪解題的學(xué)習(xí)收益量與用于解題的時(shí)間之間的函數(shù)關(guān)系式;

(2)求小迪回顧反思的學(xué)習(xí)收益量與用于回顧反思的時(shí)間的函數(shù)關(guān)系式;

(3)問(wèn)小迪如何分配解題和回顧反思的時(shí)間,才能使這20分鐘的學(xué)習(xí)收益總量最大?

 

【答案】

解:(1)由圖1,設(shè).當(dāng)時(shí),,

解得

(2)由圖2,當(dāng)時(shí),設(shè)

當(dāng)時(shí),,

,即

當(dāng)時(shí),

因此

(3)設(shè)小迪用于回顧反思的時(shí)間為分鐘,

學(xué)習(xí)收益總量為,則她用于解題的時(shí)間為分鐘.

當(dāng)時(shí),

當(dāng)時(shí),

當(dāng)時(shí),

的增大而減小,因此當(dāng)時(shí),

綜上,當(dāng)時(shí),,此時(shí)

答:小迪用于回顧反思的時(shí)間為3分鐘,用于解題的時(shí)間為17分鐘時(shí),學(xué)習(xí)收益總量最大.

【解析】(1)根據(jù)題意可得,這是一個(gè)正比例函數(shù),設(shè)出函數(shù)關(guān)系式,再根據(jù)點(diǎn)(1,2)即得結(jié)果;

(2)這是一個(gè)分段函數(shù),第一段是二次函數(shù),根據(jù)圖象特征設(shè)出頂點(diǎn)式,再根據(jù)圖象經(jīng)過(guò)原點(diǎn)即得解析式,第二段是一個(gè)常數(shù)函數(shù);

根據(jù)“學(xué)習(xí)收益總量=解題的學(xué)習(xí)收益量+回顧反思的學(xué)習(xí)收益量”,分別在兩段時(shí)間范圍內(nèi)得到函數(shù)關(guān)系式,再根據(jù)函數(shù)特征即可得到結(jié)果。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2007年初中畢業(yè)升學(xué)考試(浙江臺(tái)州卷)數(shù)學(xué)(帶解析) 題型:解答題

善于不斷改進(jìn)學(xué)習(xí)方法的小迪發(fā)現(xiàn),對(duì)解題進(jìn)行回顧反思,學(xué)習(xí)效果更好.某一天小迪有20分鐘時(shí)間可用于學(xué)習(xí).假設(shè)小迪用于解題的時(shí)間(單位:分鐘)與學(xué)習(xí)收益量的關(guān)系如圖1所示,用于回顧反思的時(shí)間(單位:分鐘)與學(xué)習(xí)收益的關(guān)系如圖2所示(其中是拋物線的一部分,為拋物線的頂點(diǎn)),且用于回顧反思的時(shí)間不超過(guò)用于解題的時(shí)間.
(1)求小迪解題的學(xué)習(xí)收益量與用于解題的時(shí)間之間的函數(shù)關(guān)系式;
(2)求小迪回顧反思的學(xué)習(xí)收益量與用于回顧反思的時(shí)間的函數(shù)關(guān)系式;
(3)問(wèn)小迪如何分配解題和回顧反思的時(shí)間,才能使這20分鐘的學(xué)習(xí)收益總量最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案