【題目】已知Rt△ABC,AB=3,BC=4,CA=5,P為△ABC外接圓上的一動(dòng)點(diǎn),且 的最大值是( )
A.
B.
C.
D.

【答案】B
【解析】解:以AC的中點(diǎn)為原點(diǎn),以ACx軸,建立如圖所示的平面直角坐標(biāo)系,

則△ABC外接圓的方程為x2+y2=2.52 ,
設(shè)P的坐標(biāo)為( cosθ, sinθ),
過(guò)點(diǎn)B作BD垂直x軸,
∵sinA= ,AB=3
∴BD=ABsinA= ,AD=ABcosA= ×3= ,
∴OD=AO﹣AD=2.5﹣ = ,
∴B(﹣ , ),
∵A(﹣ ,0),C( ,0)
=( , ), =(5,0), =( cosθ+ sinθ)
=x +y
∴( cosθ+ , sinθ)=x( , )+y(5,0)=( x+5y, x)
cosθ+ = x+5y, sinθ= x,
∴y= cosθ﹣ sinθ+ ,x= sinθ,
∴x+y= cosθ+ sinθ+ = sin(θ+φ)+ ,其中sinφ= ,cosφ= ,
當(dāng)sin(θ+φ)=1時(shí),x+y有最大值,最大值為 + = ,
故選:B
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平面向量的基本定理及其意義的相關(guān)知識(shí),掌握如果、是同一平面內(nèi)的兩個(gè)不共線(xiàn)向量,那么對(duì)于這一平面內(nèi)的任意向量,有且只有一對(duì)實(shí)數(shù)、,使

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=|x﹣a|,a∈R.
(1)當(dāng)a=1時(shí),求不等式f(x)+|2x﹣5|≥6的解集;
(2)若函數(shù)g(x)=f(x)﹣|x﹣3|的值域?yàn)锳,且[﹣1,2]A,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若存在正實(shí)數(shù)m,使得關(guān)于x的方程x+a(2x+2m﹣4ex)[ln(x+m)﹣lnx]=0成立,其中e為自然對(duì)數(shù)的底數(shù),則實(shí)數(shù)a的取值范圍是(
A.(﹣∞,0)
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰三角形ABC中,已知|AB|=|AC|=1,∠A=120°,E,F(xiàn)分別是AB,AC上的點(diǎn),且 ,(其中λ,μ∈(0,1)),且λ+4μ=1,若線(xiàn)段EF,BC的中點(diǎn)分別為M,N,則 的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn)C1的參數(shù)方程為 (t為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C2的極坐標(biāo)方程為 . (I)求曲線(xiàn)C2的直角坐標(biāo)系方程;
(II)設(shè)M1是曲線(xiàn)C1上的點(diǎn),M2是曲線(xiàn)C2上的點(diǎn),求|M1M2|的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿(mǎn)足 ,(n∈N+). (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè) ,數(shù)列{bn}的前n項(xiàng)和Sn , 求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知事件“在矩形ABCD的邊CD上隨機(jī)取一點(diǎn)P,使△APB的最大邊是AB”發(fā)生的概率為 ,則 =(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小敏從地出發(fā)向地行走,同時(shí)小聰從地出發(fā)向地行走,如圖所示,相交于點(diǎn) 的兩條線(xiàn)段分別表示小敏、小聰離地的距離(km)與已用時(shí)間(h)之間的關(guān)系,則________時(shí),小敏、小聰兩人相距7 km.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等邊△ABO在平面直角坐標(biāo)系中,點(diǎn)A(4 ,0),函數(shù)y= (x>0,k為常數(shù))的圖象經(jīng)過(guò)AB的中點(diǎn)D,交OB于E.
(1)求k的值;
(2)若第一象限的雙曲線(xiàn)y= 與△BDE沒(méi)有交點(diǎn),請(qǐng)直接寫(xiě)出m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案