【題目】甲、乙兩車分別從相距480km的A、B兩地相向而行,乙車比甲車先出發(fā)1小時(shí),并以各自的速度勻速行駛,途徑C地,甲車到達(dá)C地停留1小時(shí),因有事按原路原速返回A地.乙車從B地直達(dá)A地,兩車同時(shí)到達(dá)A地.甲、乙兩車距各自出發(fā)地的路程y(千米)與甲車出發(fā)所用的時(shí)間x(小時(shí))的關(guān)系如圖,結(jié)合圖象信息解答下列問(wèn)題:
(1)乙車的速度是 千米/時(shí),t= 小時(shí);
(2)求甲車距它出發(fā)地的路程y與它出發(fā)的時(shí)間x的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍;
(3)直接寫(xiě)出乙車出發(fā)多長(zhǎng)時(shí)間兩車相距120千米.
【答案】(1)60,3;
(2)①y=120t(0≤t≤3);②y=120(3<t≤4);③y=-120t+840(4<t≤7);
【解析】試題分析:(1)首先根據(jù)圖示,可得乙車的速度是60千米/時(shí),然后根據(jù)路程÷速度=時(shí)間,用兩地之間的距離除以乙車的速度,求出乙車到達(dá)A地用的時(shí)間是多少;最后根據(jù)路程÷時(shí)間=速度,用兩地之間的距離除以甲車往返AC兩地用的時(shí)間,求出甲車的速度,再用360除以甲車的速度,求出t的值是多少即可.
(2)根據(jù)題意,分3種情況:①當(dāng)0≤x≤3時(shí);②當(dāng)3<x≤4時(shí);③4<x≤7時(shí);分類討論,求出甲車距它出發(fā)地的路程y與它出發(fā)的時(shí)間x的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍即可.
(3)根據(jù)題意,分3種情況:①甲乙兩車相遇之前相距120千米;②當(dāng)甲車停留在C地時(shí);③兩車都朝A地行駛時(shí);然后根據(jù)路程÷速度=時(shí)間,分類討論,求出乙車出發(fā)多長(zhǎng)時(shí)間兩車相距120千米即可.
試題解析:(1)根據(jù)圖示,可得
乙車的速度是60千米/時(shí),
甲車的速度=720÷6=120(千米/小時(shí))
∴t=360÷120=3(小時(shí)).
(2)①當(dāng)0≤x≤3時(shí),設(shè)y=k1x,
把(3,360)代入,可得
3k1=360,
解得k1=120,
∴y=120x(0≤x≤3).
②當(dāng)3<x≤4時(shí),y=360.
③4<x≤7時(shí),設(shè)y=k2x+b,
把(4,360)和(7,0)代入,可得,解得
∴y=﹣120x+840(4<x≤7).
(3)①÷+1=300÷180+1=+1=(小時(shí))
②當(dāng)甲車停留在C地時(shí),
÷60
=240÷6
=4(小時(shí))
③兩車都朝A地行駛時(shí),
設(shè)乙車出發(fā)x小時(shí)后兩車相距120千米,
則60x﹣[120(x﹣1)﹣360]=120,
所以480﹣60x=120,
所以60x=360,
解得x=6.
綜上,可得乙車出發(fā)小時(shí)、4小時(shí)、6小時(shí)后兩車相距120千米.
故答案為:60、3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】25位同學(xué)10秒鐘跳繩的成績(jī)匯總?cè)缦卤恚?/span>
人數(shù) | 1 | 2 | 3 | 4 | 5 | 10 |
次數(shù) | 15 | 8 | 25 | 10 | 17 | 20 |
那么跳繩次數(shù)的中位數(shù)是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】珠江流域某江段江水流向經(jīng)過(guò)B、C、D三點(diǎn)拐彎后與原來(lái)相同,如圖,若∠ABC=120°,∠BCD=80°,則∠CDE=__________度.
(第22題)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點(diǎn),且與反比例函數(shù)y=(n為常數(shù)且n≠0)的圖象在第二象限交于點(diǎn)C.CD⊥x軸,垂直為D,若OB=2OA=3OD=6.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求兩函數(shù)圖象的另一個(gè)交點(diǎn)坐標(biāo);
(3)直接寫(xiě)出不等式;kx+b≤的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線(m>0)與x軸的交點(diǎn)為A,B.
(1)求拋物線的頂點(diǎn)坐標(biāo);
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).
①當(dāng)m=1時(shí),求線段AB上整點(diǎn)的個(gè)數(shù);
②若拋物線在點(diǎn)A,B之間的部分與線段AB所圍成的區(qū)域內(nèi)(包括邊界)恰有6個(gè)整點(diǎn),結(jié)合函數(shù)的圖象,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果x2+4x+k2恰好是另一個(gè)整式的平方,那么常數(shù)k的值為( )
A.4
B.2
C.-2
D.±2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com