已知M,N兩點(diǎn)關(guān)于y軸對(duì)稱,且點(diǎn)M在反比例函數(shù)的圖象上,點(diǎn)N在一次函數(shù)y=x+3的圖象上,設(shè)點(diǎn)M的坐標(biāo)為(a,b),則二次函數(shù)y=abx2+(a+b)x( )
A.有最小值,且最小值是
B.有最大值,且最大值是-
C.有最大值,且最大值是
D.有最小值,且最小值是-
【答案】分析:先用待定系數(shù)法求出二次函數(shù)的解析式,再根據(jù)二次函數(shù)圖象上點(diǎn)的坐標(biāo)特點(diǎn)求出其最值即可.
解答:解:因?yàn)镸,N兩點(diǎn)關(guān)于y軸對(duì)稱,所以設(shè)點(diǎn)M的坐標(biāo)為(a,b),則N點(diǎn)的坐標(biāo)為(-a,b),
又因?yàn)辄c(diǎn)M在反比例函數(shù)的圖象上,點(diǎn)N在一次函數(shù)y=x+3的圖象上,所以,整理得,
故二次函數(shù)y=abx2+(a+b)x為y=x2+3x,
所以二次項(xiàng)系數(shù)為>0,故函數(shù)有最小值,最小值為y==-
故選D.
點(diǎn)評(píng):本題考查的是關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)特征及一次函數(shù)與反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,二次函數(shù)的最值等多個(gè)知識(shí)點(diǎn),是一道具有一定綜合性的好題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知M、N兩點(diǎn)關(guān)于y軸對(duì)稱,且點(diǎn)M在雙曲線y=
12x
上,點(diǎn)N在直線y=-x+3上,設(shè)點(diǎn)M坐標(biāo)為(a,b),則y=-abx2+(a+b)x的頂點(diǎn)坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知M,N兩點(diǎn)關(guān)于y軸對(duì)稱,且點(diǎn)M在反比例函數(shù)y=
1
2x
的圖象上,點(diǎn)N在一次函數(shù)y=x+3的圖象上,設(shè)點(diǎn)M的坐標(biāo)為(a,b),則二次函數(shù)y=abx2+(a+b)x( 。
A、有最小值,且最小值是
9
2
B、有最大值,且最大值是-
9
2
C、有最大值,且最大值是
9
2
D、有最小值,且最小值是-
9
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知A、B兩點(diǎn)關(guān)于y軸對(duì)稱,點(diǎn)A在雙曲線y=
1x
上,點(diǎn)B在直線y=-x上,則點(diǎn)A的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知M、N兩點(diǎn)關(guān)于y軸對(duì)稱,且點(diǎn)M在反比例函數(shù)y=
2
x
的圖象上,點(diǎn)N在直線y=x+4上,設(shè)點(diǎn)M的坐標(biāo)為(a,b),則二次函數(shù)y=-abx2+(a+b)x有( 。
A、最小值為2
B、最大值為2
C、最小值為-2
D、最大值為-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知M,N兩點(diǎn)關(guān)于x軸對(duì)稱,且點(diǎn)M在反比例函數(shù)y=
1
2x
的圖象上,點(diǎn)N在直線y=-x+3上,設(shè)點(diǎn)M坐標(biāo)為(a,b),則y=-abx2+(b-a)x的頂點(diǎn)坐標(biāo)為
(-3,
9
2
(-3,
9
2

查看答案和解析>>

同步練習(xí)冊(cè)答案