【題目】在圖①②中,點(diǎn)E在矩形ABCD的邊BC上,且BE=AB,現(xiàn)要求僅用無(wú)刻度的直尺分別按下列要求畫圖.[保留畫(作)圖痕跡,不寫畫(作)法]
(1)在圖①中,畫∠BAD的平分線;
(2)在圖②中,畫∠BCD的平分線.
【答案】(1)見解析;(2)見解析
【解析】
(1)連接AE,等邊對(duì)等角可得∠BAE=∠BEA=45,再根據(jù)平行線的性質(zhì)即可得到AE是∠BAD的平分線;
(2)連接矩形ABCD的對(duì)角線,交于點(diǎn)O,可得AO=CO,再連接EO并延長(zhǎng),交BC于P,根據(jù)△APO≌△CEO,可得AP=CE,得到四邊形AECP為平行四邊形,得到∠ECP=∠BEA=45,即可得到CP是∠BCD的平分線.
(1)如圖所示,AE即為所求;
∵點(diǎn)E在矩形ABCD的邊BC上,且BE=AB,
∴∠B=90,∠BAE=∠BEA=45,
∵AD∥BC,
∴∠DAE=∠BEA=45,
∴∠DAE=∠BAE,
∴AE是∠BAD的平分線;
(2)如圖所示,CP即為所求;
∵四邊形ABCD是矩形,
∴AP∥EC,
∴∠PAO=∠ECO,
點(diǎn)O是矩形ABCD對(duì)角線的交點(diǎn),
∴AO=CO,
∵∠POA=∠EOC,
∴△APO≌△CEO,
∴AP=CE,
又∵AP∥EC,
∴四邊形AECP為平行四邊形,
∴AE∥PC,
∴∠ECP=∠BEA=45,
∴CP是∠BCD的平分線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】春臨大地,學(xué)校決定給長(zhǎng)12米,寬9米的一塊長(zhǎng)方形展示區(qū)進(jìn)行種植改造現(xiàn)將其劃分成如圖兩個(gè)區(qū)域:區(qū)域Ⅰ矩形ABCD部分和區(qū)域Ⅱ四周環(huán)形部分,其中區(qū)域Ⅰ用甲、乙、丙三種花卉種植,且EF平分BD,G,H分別為AB,CD中點(diǎn).
(1)若區(qū)域Ⅰ的面積為Sm2,種植均價(jià)為180元/m2,區(qū)域Ⅱ的草坪均價(jià)為40元/m2,且兩區(qū)域的總價(jià)為16500元,求S的值.
(2)若AB:BC=4:5,區(qū)域Ⅱ左右兩側(cè)草坪環(huán)寬相等,均為上、下草坪環(huán)寬的2倍
①求AB,BC的長(zhǎng);
②若甲、丙單價(jià)和為360元/m2,乙、丙單價(jià)比為13:12,三種花卉單價(jià)均為20的整數(shù)倍.當(dāng)矩形ABCD中花卉的種植總價(jià)為14520元時(shí),求種植乙花卉的總價(jià).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為的外接圓,直徑.
(1)用尺規(guī)作圖,作出劣弧的中點(diǎn)(保留作圖痕跡,不寫做法);
(2)連接,若,求弦的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校學(xué)生會(huì)發(fā)現(xiàn)同學(xué)們就餐時(shí)剩余飯菜較多,浪費(fèi)嚴(yán)重,于是準(zhǔn)備在校內(nèi)倡導(dǎo)“光盤行動(dòng)”,讓同學(xué)們珍惜糧食,為了讓同學(xué)們理解這次活動(dòng)的重要性,校學(xué)生會(huì)在某天午餐后,隨機(jī)調(diào)查了部分同學(xué)這餐飯菜的剩余情況,并將結(jié)果統(tǒng)計(jì)后繪制成了如圖所示的不完整的統(tǒng)計(jì)圖。
(1)這次被調(diào)查的同學(xué)共有 名;
(2)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)校學(xué)生會(huì)通過(guò)數(shù)據(jù)分析,估計(jì)這次被調(diào)查的所有學(xué)生一餐浪費(fèi)的食物可以供200人用一餐。據(jù)此估算,該校18000名學(xué)生一餐浪費(fèi)的食物可供多少人食用一餐?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB為⊙O的直徑,過(guò)點(diǎn)A作⊙O的切線交BC的延長(zhǎng)線于點(diǎn)E,在弦BC上取一點(diǎn)F,使AF=AE,連接AF并延長(zhǎng)交⊙O于點(diǎn)D.
(1)求證:∠B=∠CAD;
(2)若CE=2,∠B=30°,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,AB=,AC=,BC=6.
(1)如圖1,點(diǎn)M為AB的中點(diǎn),在線段AC上取點(diǎn)N,使△AMN與△ABC相似,求線段MN的長(zhǎng);
(2)如圖2,是由100個(gè)邊長(zhǎng)為1的小正方形組成的10×10的正方形網(wǎng)格,設(shè)頂點(diǎn)在這些小正方形頂點(diǎn)
的三角形為格點(diǎn)三角形.
①請(qǐng)你在所給的網(wǎng)格中畫出格點(diǎn)△A1B1C1與△ABC全等(畫出一個(gè)即可,不需證明);
②試直接寫出所給的網(wǎng)格中與△ABC相似且面積最大的格點(diǎn)三角形的個(gè)數(shù),并畫出其中一個(gè)(不需
證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于點(diǎn)D,點(diǎn)O在AB上,⊙O經(jīng)過(guò)A,D兩點(diǎn),交AB于點(diǎn)E,交AC于點(diǎn)F
(1)求證:BC是⊙O的切線;
(2)若⊙O半徑是2cm,F是弧AD的中點(diǎn),求陰影部分的面積(結(jié)果保留π和根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠ABC=90°,以AB為直徑作⊙O交AC于點(diǎn)D,連接BD.
(1)求證:∠A=∠CBD.
(2)若AB=10,AD=6,M為線段BC上一點(diǎn),請(qǐng)寫出一個(gè)BM的值,使得直線DM與⊙O相切,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別是A(1,1),B(4,1),C(3,3).
(1)將△ABC向下平移5個(gè)單位后得到△A1B1C1,請(qǐng)畫出△A1B1C1;
(2)將△ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△A2B2C2,請(qǐng)畫出△A2B2C2;
(3)判斷以O,A1,B為頂點(diǎn)的三角形的形狀.(無(wú)須說(shuō)明理由)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com