如圖,已知OA=OB,OC=OD,下列結(jié)論中(1)∠A=∠B;(2)DE=CE;(3)連OE,OE平分∠O,正確的有
(1)、(2)、(3)
(1)、(2)、(3)
分析:先根據(jù)“SAS”可證明△OAD≌△OCB,則得到∠A=∠B;再利用“AAS”可證明△ECA≌△EDB(AAS),得CE=DE,EA=EB,然后利用“SSS”可證明△OAE≌△OBE,則∠AOE=∠BOE,得到OE平分∠AOB.
解答:解:在△OAD和△OCB中
OD=OC
∠AOD=∠BOC
OA=OB
,
∴△OAD≌△OCB(SAS),
∴∠A=∠B,所以(1)正確;
∵OA=OB,OC=OD,
∴AC=BD,
在△ECA和△EDB中
∠A=∠B
∠CEA=∠DEB
AC=BD
,
∴△ECA≌△EDB(AAS),
∴CE=DE,EA=EB,所以(2)正確;
連OE,
在△OAE和△OBE中
OA=OB
OE=OE
AE=BE
,
∴△OAE≌△OBE(SSS),
∴∠AOE=∠BOE,
∴OE平分∠AOB,所以(3)正確.
故答案為(1)、(2)、(3).
點(diǎn)評(píng):本題考查了全等三角形的判定與性質(zhì):判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知OA=OB,數(shù)軸上點(diǎn)C表示的數(shù)是2,那數(shù)軸上線(xiàn)段AC的長(zhǎng)度是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,已知OA=OB,點(diǎn)C在OA上,點(diǎn)D在OB上,OC=OD,AD與BC相交于點(diǎn)E,那么圖中全等的三角形共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知OA⊥OB,OA=4,OB=3,以AB為邊作矩形ABCD,使AD=a,過(guò)點(diǎn)D作DE垂直O(jiān)A的延精英家教網(wǎng)長(zhǎng)線(xiàn)交于點(diǎn)E.
(1)證明:△OAB∽△EDA;
(2)當(dāng)a為何值時(shí),△OAB與△EDA全等?請(qǐng)說(shuō)明理由,并求出此時(shí)點(diǎn)C到OE的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知OA=OB,那么數(shù)軸上點(diǎn)A與點(diǎn)C的距離是
 
個(gè)單位長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案