如圖1,過△ABC的三個(gè)頂點(diǎn)分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長(zhǎng)度叫△ABC的“鉛垂高”(h).我們可得出一種計(jì)算三角形面積的新方法:S△ABC=ah,即三角形面積等于水平寬與鉛垂高乘積的一半.

解答下列問題:
如圖2,拋物線頂點(diǎn)坐標(biāo)為點(diǎn)C(1,4),交x軸于點(diǎn)A(3,0),點(diǎn)P是拋物線(在第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)B為拋物線與y軸的交點(diǎn),求直線AB的解析式;
(3)設(shè)點(diǎn)P是拋物線(第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn),是否存在一點(diǎn)P,使S△PAB=S△CAB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

解:(1)設(shè)拋物線的解析式為:y1=a(x-1)2+4,
把A(3,0)代入解析式求得a=-1,
所以y1=-(x-1)2+4=-x2+2x+3,

(2)設(shè)直線AB的解析式為:y2=kx+b,
求得B點(diǎn)的坐標(biāo)為(0,3),
把A(3,0),B(0,3)代入y2=kx+b中,
,
解得:
所以y2=-x+3,

(3)因?yàn)镃點(diǎn)坐標(biāo)為(1,4),
所以當(dāng)x=1時(shí),y1=4,y2=2,
所以CD=4-2=2,
,
假設(shè)存在符合條件的點(diǎn)P,設(shè)點(diǎn)P的橫坐標(biāo)是x,△PAB的鉛垂高為h,
則h=y1-y2=(-x2+2x+3)-(-x+3)=-x2+3x,
由S△PAB=S△CAB
得:×3×(-x2+2x)=3
化簡(jiǎn)得:x2-2x+2=0,
∵b2+4ac=4-8=-4<0,
∴此方程無實(shí)數(shù)根,
∴不存在這樣的點(diǎn)使S△PAB=S△CAB
分析:(1)已知拋物線的頂點(diǎn)和拋物線上的幾點(diǎn),即可利用頂點(diǎn)式求解析式;
(2)利用A,B兩點(diǎn)的坐標(biāo),由待定系數(shù)法求一次函數(shù)解析式即可;
(3)根據(jù)S△PAB=S△CAB即可得到一個(gè)關(guān)于點(diǎn)P的橫坐標(biāo)的方程,即可求出方程根的情況,進(jìn)而得到不存在符合要求的P點(diǎn).
點(diǎn)評(píng):此題主要考查了二次函數(shù)的解析式的求法和與幾何圖形結(jié)合的綜合能力的培養(yǎng).要會(huì)利用數(shù)形結(jié)合的思想把代數(shù)和幾何圖形結(jié)合起來,利用點(diǎn)的坐標(biāo)的意義表示線段的長(zhǎng)度,從而求出線段之間的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

精英家教網(wǎng)閱讀材料:
如圖1,過△ABC的三個(gè)頂點(diǎn)分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長(zhǎng)度叫△ABC的“鉛垂高(h)”.我們可得出一種計(jì)算三角形面積的新方法:
S△ABC=
1
2
ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:
如圖2,拋物線頂點(diǎn)坐標(biāo)為點(diǎn)C(1,4),交x軸于點(diǎn)A(3,0),交y軸于點(diǎn)B.
(1)求拋物線和直線AB的解析式;
(2)點(diǎn)P是拋物線(在第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn),連接PA,PB,當(dāng)P點(diǎn)運(yùn)動(dòng)到頂點(diǎn)C時(shí),求△CAB的鉛垂高CD及S△CAB;
(3)是否存在拋物線上一點(diǎn)P,使S△PAB=
9
8
S△CAB?若存在,求出P點(diǎn)的坐標(biāo);若精英家教網(wǎng)不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

精英家教網(wǎng)閱讀材料:如圖1,過△ABC的三個(gè)頂點(diǎn)分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長(zhǎng)度叫△ABC的“鉛垂高”(h).我們可得出一種計(jì)算三角形面積的新方法:S△ABC=
12
ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:
如圖2,拋物線頂點(diǎn)坐標(biāo)為點(diǎn)C(1,4),交x軸于點(diǎn)A(3,0),點(diǎn)P是拋物線(在第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)B為拋物線與y軸的交點(diǎn),求直線AB的解析式;
(3)在(2)的條件下,設(shè)拋物線的對(duì)稱軸分別交AB、x軸于點(diǎn)D、M,連接PA、PB,當(dāng)P點(diǎn)運(yùn)動(dòng)到頂點(diǎn)C時(shí),求△CAB的鉛垂高CD及S△CAB;
(4)在(2)的條件下,設(shè)P點(diǎn)的橫坐標(biāo)為x,△PAB的鉛垂高為h、面積為S,請(qǐng)分別寫出h和S關(guān)于x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

精英家教網(wǎng)閱讀材料:
如圖1,過△ABC的三個(gè)頂點(diǎn)分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長(zhǎng)度叫△ABC的“鉛垂高(h)”.我們可得出一種計(jì)算三角形面積的新方法:S△ABC=
12
ah
,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:精英家教網(wǎng)
如圖2,拋物線頂點(diǎn)坐標(biāo)為點(diǎn)C(-1,-4),交x軸于點(diǎn)A(-3,0),交y軸于點(diǎn)B.
(1)求拋物線和直線AB的解析式;
(2)點(diǎn)P是拋物線(在第三象限內(nèi))上的一個(gè)動(dòng)點(diǎn),連接PA,PB,當(dāng)P點(diǎn)運(yùn)動(dòng)到頂點(diǎn)C時(shí),求△CAB的鉛垂高CD及S△CAB
(3)是否存在一點(diǎn)P,使S△PAB=S△CAB,若存在,求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•龍巖)如圖1,過△ABC的頂點(diǎn)A作高AD,將點(diǎn)A折疊到點(diǎn)D(如圖2),這時(shí)EF為折痕,且△BED和△CFD都是等腰三角形,再將△BED和△CFD沿它們各自的對(duì)稱軸EH、FG折疊,使B、C兩點(diǎn)都與點(diǎn)D重合,得到一個(gè)矩形EFGH(如圖3),我們稱矩形EFGH為△ABC的邊BC上的折合矩形.
(1)若△ABC的面積為6,則折合矩形EFGH的面積為
3
3
;
(2)如圖4,已知△ABC,在圖4中畫出△ABC的邊BC上的折合矩形EFGH;
(3)如果△ABC的邊BC上的折合矩形EFGH是正方形,且BC=2a,那么,BC邊上的高AD=
2a
2a
,正方形EFGH的對(duì)角線長(zhǎng)為
2
a
2
a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料:
如圖1,過△ABC的三個(gè)頂點(diǎn)分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長(zhǎng)度叫△ABC的“鉛垂高”(h).我們可得出一種計(jì)算三角形面積的新方法:S△ABC=ah,即三角形面積等于水平寬與鉛垂高乘積的一半.

解答下列問題:
如圖2,拋物線頂點(diǎn)坐標(biāo)為點(diǎn)C(1,4),交x軸于點(diǎn)A(3,0),點(diǎn)P是拋物線(在第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)B為拋物線與y軸的交點(diǎn),求直線AB的解析式;
(3)設(shè)點(diǎn)P是拋物線(第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn),是否存在一點(diǎn)P,使S△PAB=S△CAB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案