如圖,已知拋物線與x軸的交點(diǎn)為A、D(A在D的右側(cè)),與y軸的交點(diǎn)為C.
(1)直接寫(xiě)出A、D、C三點(diǎn)的坐標(biāo);
(2)若點(diǎn)M在拋物線上,使得△MAD的面積與△CAD的面積相等,求點(diǎn)M的坐標(biāo);
(3)設(shè)點(diǎn)C關(guān)于拋物線對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)為B,在拋物線上是否存在點(diǎn)P,使得以A、B、C、P四點(diǎn)為頂點(diǎn)的四邊形為梯形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(1)A點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(﹣2,0),C點(diǎn)坐標(biāo)為(0,﹣3);
(2)M點(diǎn)坐標(biāo)為(2,﹣3)或(1+,3)或(1﹣,3);
(3)結(jié)論:在拋物線上存在一點(diǎn)P,使得以點(diǎn)A、B、C、P四點(diǎn)為頂點(diǎn)所構(gòu)成的四邊形為梯形;點(diǎn)P的坐標(biāo)為(﹣2,0)或(6,6).
解析試題分析:(1)令Y=0,X=0就可以得到
根據(jù)已知先求得對(duì)稱(chēng)軸,由于△MAD的面積與△CAD的面積相等,所以有兩種情況,一種是點(diǎn)M在X軸下方,此時(shí)點(diǎn)M與點(diǎn)C關(guān)于對(duì)稱(chēng)軸對(duì)稱(chēng),另一種是點(diǎn)M在X軸上方,由于面積相等,而AD是兩個(gè)三角形公用的,所以可知點(diǎn)M的縱坐標(biāo)為3,將Y=3代入解析式就可求得.
分情況討論,一種是BC、AP為底,此時(shí)P點(diǎn)與D點(diǎn)重合;一種是AB、CP為底,此時(shí)要先求出AB所在直線的解析式,然后根據(jù)互相平行的兩直線的K值相等,求出CP的解析式,與二次函數(shù)的解析式聯(lián)立,得到方程組,求解即可得到。
試題解析:(1)∵y=x2﹣x﹣3,∴當(dāng)y=0時(shí),x2﹣x﹣3=0,
解得x1=﹣2,x2=4.當(dāng)x=0,y=﹣3.
∴A點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(﹣2,0),C點(diǎn)坐標(biāo)為(0,﹣3);
(2)∵y=x2﹣x﹣3,∴對(duì)稱(chēng)軸為直線x==1.
∵AD在x軸上,點(diǎn)M在拋物線上,
∴當(dāng)△MAD的面積與△CAD的面積相等時(shí),分兩種情況:
①點(diǎn)M在x軸下方時(shí),根據(jù)拋物線的對(duì)稱(chēng)性,可知點(diǎn)M與點(diǎn)C關(guān)于直線x=1對(duì)稱(chēng),
∵C點(diǎn)坐標(biāo)為(0,﹣3),∴M點(diǎn)坐標(biāo)為(2,﹣3);
②點(diǎn)M在x軸上方時(shí),根據(jù)三角形的等面積法,可知M點(diǎn)到x軸的距離等于點(diǎn)C到x軸的距離3.當(dāng)y=3時(shí),x2﹣x﹣3=3,解得x1=1+,x2=1﹣,
∴M點(diǎn)坐標(biāo)為(1+,3)或(1﹣,3).
綜上所述,所求M點(diǎn)坐標(biāo)為(2,﹣3)或(1+,3)或(1﹣,3);
(3)結(jié)論:存在.
如圖所示,在拋物線上有兩個(gè)點(diǎn)P滿足題意:
①若BC∥AP1,此時(shí)梯形為ABCP1.
由點(diǎn)C關(guān)于拋物線對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)為B,可知BC∥x軸,則P1與D點(diǎn)重合,
∴P1(﹣2,0).∵P1A=6,BC=2,∴P1A≠BC,∴四邊形ABCP1為梯形;
②若AB∥CP2,此時(shí)梯形為ABCP2.
∵A點(diǎn)坐標(biāo)為(4,0),B點(diǎn)坐標(biāo)為(2,﹣3),∴直線AB的解析式為y=x﹣6,
∴可設(shè)直線CP2的解析式為y=x+n,將C點(diǎn)坐標(biāo)(0,﹣3)代入,得b=﹣3,
∴直線CP2的解析式為y=x﹣3.∵點(diǎn)P2在拋物線y=x2﹣x﹣3上,
∴x2﹣x﹣3=x﹣3,化簡(jiǎn)得:x2﹣6x=0,解得x1=0(舍去),x2=6,
∴點(diǎn)P2橫坐標(biāo)為6,代入直線CP2解析式求得縱坐標(biāo)為6,∴P2(6,6).
∵AB∥CP2,AB≠CP2,∴四邊形ABCP2為梯形.
綜上所述,在拋物線上存在一點(diǎn)P,使得以點(diǎn)A、B、C、P四點(diǎn)為頂點(diǎn)所構(gòu)成的四邊形為梯形;點(diǎn)P的坐標(biāo)為(﹣2,0)或(6,6).
考點(diǎn):1、二次函數(shù)的性質(zhì);2、等積三角形;3、梯形;4、解方程
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
有下列4個(gè)命題:
①方程的根是和.
②在△ABC中,∠ACB=90°,CD⊥AB于D.若AD=4,BD=,則CD=3.
③點(diǎn)P(x,y)的坐標(biāo)x,y滿足x2+y2+2x﹣2y+2=0,若點(diǎn)P也在的圖象上,則k=﹣1.
④若實(shí)數(shù)b、c滿足1+b+c>0,1﹣b+c<0,則關(guān)于x的方程x2+bx+c=0一定有兩個(gè)不相等的實(shí)數(shù)根,且較大的實(shí)數(shù)根x0滿足﹣1<x0<1.
上述4個(gè)命題中,真命題的序號(hào)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,二次函數(shù)的圖像與軸交于點(diǎn)A,B(點(diǎn)B在點(diǎn)A的左側(cè)),與軸交于點(diǎn)C,過(guò)動(dòng)點(diǎn)H(0, )作平行于軸的直線,直線與二次函數(shù)的圖像相交于點(diǎn)D,E.
(1)寫(xiě)出點(diǎn)A,點(diǎn)B的坐標(biāo);
(2)若,以DE為直徑作⊙Q,當(dāng)⊙Q與軸相切時(shí),求的值;
(3)直線上是否存在一點(diǎn)F,使得△ACF是等腰直角三角形?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,我們不妨把橫坐標(biāo)與縱坐標(biāo)相等的點(diǎn)稱(chēng)為“夢(mèng)之點(diǎn)”,例如點(diǎn)(﹣1,﹣1),(0,0),(,),…都是“夢(mèng)之點(diǎn)”,顯然,這樣的“夢(mèng)之點(diǎn)”有無(wú)數(shù)個(gè).
(1)若點(diǎn)P(2,m)是反比例函數(shù)y=(n為常數(shù),n≠0)的圖象上的“夢(mèng)之點(diǎn)”,求這個(gè)反比例函數(shù)的解析式;
(2)函數(shù)y=3kx+s﹣1(k,s是常數(shù))的圖象上存在“夢(mèng)之點(diǎn)”嗎?若存在,請(qǐng)求出“夢(mèng)之點(diǎn)”的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若二次函數(shù)y=ax2+bx+1(a,b是常數(shù),a>0)的圖象上存在兩個(gè)不同的“夢(mèng)之點(diǎn)”A(x1,x1),B(x2,x2),且滿足﹣2<x1<2,|x1﹣x2|=2,令t=b2﹣2b+,試求出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(﹣1,0),B(4,0)兩點(diǎn),與y軸交于點(diǎn)C(0,2),點(diǎn)M(m,n)是拋物線上一動(dòng)點(diǎn),位于對(duì)稱(chēng)軸的左側(cè),并且不在坐標(biāo)軸上,過(guò)點(diǎn)M作x軸的平行線交y軸于點(diǎn)Q,交拋物線于另一點(diǎn)E,直線BM交y軸于點(diǎn)F.
(1)求拋物線的解析式,并寫(xiě)出其頂點(diǎn)坐標(biāo);
(2)當(dāng)S△MFQ:S△MEB=1:3時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖1,拋物線y=ax2+bx+c(a>0)的頂點(diǎn)為M,直線y=m與x軸平行,且與拋物線交于點(diǎn)A,B,若△AMB為等腰直角三角形,我們把拋物線上A,B兩點(diǎn)之間的部分與線段AB圍成的圖形稱(chēng)為該拋物線對(duì)應(yīng)的準(zhǔn)蝶形,線段AB稱(chēng)為碟寬,頂點(diǎn)M稱(chēng)為碟頂,點(diǎn)M到線段AB的距離稱(chēng)為碟高.
(1)拋物線y=x2對(duì)應(yīng)的碟寬為 ;拋物線y=4x2對(duì)應(yīng)的碟寬為 ;拋物線y=ax2(a>0)對(duì)應(yīng)的碟寬為 ;拋物線y=a(x﹣2)2+3(a>0)對(duì)應(yīng)的碟寬為 ;
(2)拋物線y=ax2﹣4ax﹣(a>0)對(duì)應(yīng)的碟寬為6,且在x軸上,求a的值;
(3)將拋物線y=anx2+bnx+cn(an>0)的對(duì)應(yīng)準(zhǔn)蝶形記為Fn(n=1,2,3…),定義F1,F(xiàn)2,…,F(xiàn)n為相似準(zhǔn)蝶形,相應(yīng)的碟寬之比即為相似比.若Fn與Fn﹣1的相似比為,且Fn的碟頂是Fn﹣1的碟寬的中點(diǎn),現(xiàn)將(2)中求得的拋物線記為y1,其對(duì)應(yīng)的準(zhǔn)蝶形記為F1.
①求拋物線y2的表達(dá)式;
②若F1的碟高為h1,F(xiàn)2的碟高為h2,…Fn的碟高為hn,則hn= ,F(xiàn)n的碟寬有端點(diǎn)橫坐標(biāo)為 2 ;F1,F(xiàn)2,…,F(xiàn)n的碟寬右端點(diǎn)是否在一條直線上?若是,直接寫(xiě)出該直線的表達(dá)式;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
某水果店銷(xiāo)售某中水果,由歷年市場(chǎng)行情可知,從第1月至第12月,這種水果每千克售價(jià)y1(元)與銷(xiāo)售時(shí)間第x月之間存在如圖1(一條線段)的變化趨勢(shì),每千克成本y2(元)與銷(xiāo)售時(shí)間第x月滿足函數(shù)關(guān)系式y(tǒng)2=mx2﹣8mx+n,其變化趨勢(shì)如圖2.
(1)求y2的解析式;
(2)第幾月銷(xiāo)售這種水果,每千克所獲得利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線經(jīng)過(guò)點(diǎn)A(3,2),B(0,1)和點(diǎn)C.
(1)求拋物線的解析式;
(2)如圖,若拋物線的頂點(diǎn)為P,點(diǎn)A關(guān)于對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)為M,過(guò)M的直線交拋物線于另一點(diǎn)N(N在對(duì)稱(chēng)軸右邊),交對(duì)稱(chēng)軸于F,若,求點(diǎn)F的坐標(biāo);
(3)在(2)的條件下,在y軸上是否存在點(diǎn)G,使△BMA與△MBG相似?若存在,求點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知一個(gè)二次函數(shù)的關(guān)系式為 y=x2-2bx+c.
(1)若該二次函數(shù)的圖象與x軸只有一個(gè)交點(diǎn),
①則b、c 應(yīng)滿足關(guān)系為 ;
②若該二次函數(shù)的圖象經(jīng)過(guò)A(m,n)、B(m +6,n)兩點(diǎn),求n的值;
(2)若該二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn)C(6,0)、D(k,0),線段CD(含端點(diǎn))上有若干個(gè)橫坐標(biāo)為整數(shù)的點(diǎn),且這些點(diǎn)的橫坐標(biāo)之和為21,求b的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com