在學(xué)習(xí)三角形中線的知識時,小明了解到:三角形的任意一條中線所在的直線可以把該三角形分為面積相等的兩部分。進而,小明繼續(xù)研究,過四邊形的某一頂點的直線能否將該四邊形平分為面積相等的兩部分?他畫出了如下示意圖(如圖1),得到了符合要求的直線AF.
小明的作圖步驟如下:
第一步:連結(jié)AC;
第二步:過點B作BE//AC交DC的延長線于點E;
第三步:取ED中點F,作直線AF;
則直線AF即為所求.
請參考小明思考問題的方法,解決問題:
如圖2,五邊形ABOCD,各頂點坐標為:A(3,4),B(0,2),O(0,0),C(4,0),D(4,2).請你構(gòu)造一條經(jīng)過頂點A的直線,將五邊形ABOCD分為面積相等的兩部分,并求出該直線的解析式.
.
解析試題分析:如圖,構(gòu)造圖形:連結(jié)AO,作BM∥AO交x軸于點M;連結(jié)AC,作DN∥AC交x軸于點N;取MN的中點F,作AH⊥x軸于點H.通過△BMO∽△AOH的對應(yīng)邊成比例得到:,則易求MO=1.5.同理CN=0.5.所以M(-1.5,0),N(4.5,0),則MN的中點F(1.5,0).設(shè)直線AF的解析式為:y=kx+b(k≠0).把點A(3,4),F(xiàn)(1.5,0)的坐標分別代入,列出關(guān)于k、b的方程組,通過解方程組來求系數(shù)k、b的值.
如圖,連結(jié)AO,作BM∥AO交x軸于點M;連結(jié)AC,作DN∥AC交x軸于點N;取MN的中點F,作AH⊥x軸于點H.
∵BM∥AO,
∴∠BMO=∠AOH.
∵∠BOM=∠AHO=90°,
∴△BMO∽△AOH,
∴,即,解得,MO=1.5.
同理 CN=0.5.
∴M(-1.5,0),N(4.5,0),
∴MN的中點F(1.5,0).
設(shè)直線AF的解析式為:y=kx+b(k≠0).
把點A(3,4),F(xiàn)(1.5,0)的坐標代入,得,解得 .
∴直線AF的解析式為:.
考點:一次函數(shù)綜合題.
科目:初中數(shù)學(xué) 來源: 題型:解答題
為了鼓勵居民節(jié)約用水,某市采用“階梯水價”的方法按月計算每戶家庭的水費:每月用水量不超過20噸時,按每噸2元計費;每月用水量超過20噸時,其中的20噸仍按每噸2元計費,超過部分按每噸2.8元計費,設(shè)每戶家庭每月用水量為x噸時,應(yīng)交水費y元.
(1)分別求出0≤x≤20和x>20時,y與x之間的函數(shù)表達式;
(2)小穎家四月份、五月份分別交水費45.6元、38元,問小穎家五月份比四月份節(jié)約用水多少噸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在直角坐標系中,設(shè)x軸為直線l,函數(shù)的圖像分別是,半徑為1的與直線中的兩條相切,例如是其中一個的圓心坐標.
(1)寫出其余滿足條件的的圓心坐標;
(2)在圖中標出所有圓心,并用線段依次連接各圓心,求所得幾何圖形的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,一次函數(shù)的圖象與x軸交于點A,與y軸交于點B,與反比例函數(shù)的圖象在第一象限內(nèi)交于點C,CD⊥x軸于點D,OD=2AO,求反比例函數(shù)的表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標系xOy中,矩形ABCD的邊AD=6,A(1,0), B(9,0),直線y=kx+b經(jīng)過B、D兩點.
(1)求直線y=kx+b的表達式;
(2)將直線y=kx+b平移,當它與矩形沒有公共點時,直接寫出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,是一張放在平面直角坐標系中的矩形紙片,為原點,點在軸的正半軸上,,在上取一點,將紙片沿翻折,使點落在邊上的點處,求直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,二次函數(shù)y=(x-2)2+m的圖象與y軸交于點C,點B是點C關(guān)于該二次函數(shù)圖象的對稱軸對稱的點,已知一次函數(shù)y=kx+b的圖象上的點A(1,0)及B.
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象,寫出滿足kx+b(x-2)2+m的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=的圖象相交于點A(2,3)和點B,與x軸相交于點C(8,0).
(1)求這兩個函數(shù)的解析式;
(2)當x取何值時,y1>y2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某車間有甲、乙兩條生產(chǎn)線.在甲生產(chǎn)線已生產(chǎn)了200噸成品后,乙生產(chǎn)線開始投入生產(chǎn),甲、乙兩條生產(chǎn)線每天分別生產(chǎn)20噸和30噸成品.
(1)分別求出甲、乙兩條生產(chǎn)線各自總產(chǎn)量(噸)與從乙開始投產(chǎn)以來所用時間(天)之間的函數(shù)關(guān)系式.
(2)作出上述兩個函數(shù)在如圖所示的直角坐標系中的圖象,觀察圖象,分別指出第10天和第30天結(jié)束時,哪條生產(chǎn)線的總產(chǎn)量高?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com