【題目】如圖,在中,點(diǎn)、、分別在、上,且,

如果,那么四邊形________形;

如果的角平分線,那么四邊形________形.

【答案】矩菱

【解析】

(1)根據(jù)平行線得出四邊形是平行四邊形,根據(jù)∠CAB=90°即可推出四邊形是矩形;
(2)首先得出平行四邊形,推出∠EDA=∠CAD=∠BAD,推出AE=DE,即可推出平行四邊形是菱形.

(1)解:四邊形AEDF是矩形,理由是:
∵DE∥AC,DF∥AB,
∴四邊形AEDF是平行四邊形,
∵∠BAC=90°,
∴平行四邊形AEDF是矩形,
故答案是:矩.
(2)解:四邊形AEDF是菱形,理由是:
∵DE∥AC,DF∥AB,
∴四邊形AEDF是平行四邊形,
∵AD是△ABC的角平分線,
∴∠BAD=∠CAD,
∵DE∥AC,
∴∠EDA=∠CAD,
∴∠EDA=∠BAD,
∴AE=DE,
∴平行四邊形AEDF是菱形,
故答案是:菱.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,點(diǎn)C在⊙O外,∠ABC的平分線與⊙O交于點(diǎn)D,C=90°.

(1)CD與⊙O有怎樣的位置關(guān)系?請(qǐng)說(shuō)明理由;

(2)若∠CDB=60°,AB=6,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,、兩個(gè)頂點(diǎn)在軸上,頂點(diǎn)軸的負(fù)半軸上.已知,,的面積,拋物線經(jīng)過(guò)、、三點(diǎn).

求此拋物線的函數(shù)表達(dá)式;

點(diǎn)是拋物線對(duì)稱(chēng)軸上的一點(diǎn),在線段上有一動(dòng)點(diǎn),以每秒個(gè)單位的速度從運(yùn)動(dòng),(不與點(diǎn),重合),過(guò)點(diǎn),交軸于點(diǎn),設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為秒,試把的面積表示成的函數(shù),當(dāng)為何值時(shí),有最大值,并求出最大值;

設(shè)點(diǎn)是拋物線上異于點(diǎn)的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)軸的平行線交拋物線于另一點(diǎn).以為直徑畫(huà),則在點(diǎn)的運(yùn)動(dòng)過(guò)程中,是否存在與軸相切的?若存在,求出此時(shí)點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形中,、為對(duì)角線,點(diǎn)、、、分別為、、、邊的中點(diǎn),下列說(shuō)法:

當(dāng)時(shí),、、、四點(diǎn)共圓.

當(dāng)時(shí),、、四點(diǎn)共圓.

當(dāng)時(shí),、、、四點(diǎn)共圓.

其中正確的是(

A. ①② B. ①③ C. ②③ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形中,,分別是邊的中點(diǎn),于點(diǎn),則

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖1,將兩個(gè)全等的三角板如圖擺放,其中△ABCΔADE的直角頂點(diǎn)重合在點(diǎn)A處,∠ADE=ABC=60°,且點(diǎn)DAC上,點(diǎn)BAE上,∠C=E=30°,AB=AD,AC=AE,BC=DE,BCDE相交于點(diǎn)F.求證:CF=EF.

(2)如圖2,將這兩個(gè)三角板如圖擺放,直角頂點(diǎn)A仍然重合,BCDE相交于點(diǎn)F,ACDE交于點(diǎn)M,AEBC交于點(diǎn)N.猜想CFEF還相等嗎?說(shuō)明理由.

(3)如圖3,在(2)的基礎(chǔ)上,若∠DAM=30°.求證:線段DFAC互相垂直平分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在我市青山綠水行動(dòng)中,某社區(qū)計(jì)劃對(duì)面積為的區(qū)域進(jìn)行綠化,經(jīng)投標(biāo)由甲、乙兩個(gè)工程隊(duì)來(lái)完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化面積的2倍,如果兩隊(duì)各自獨(dú)立完成面積為區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用6天.

(1)求甲、乙兩工程隊(duì)每天各能完成多少面積的綠化;

(2)若甲隊(duì)每天綠化費(fèi)用是1.2萬(wàn)元,乙隊(duì)每天綠化費(fèi)用為0.5萬(wàn)元,社區(qū)要使這次綠化的總費(fèi)用不超過(guò)40萬(wàn)元,則至少應(yīng)安排乙工程隊(duì)綠化多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ADABC的角平分線,E、F分別是邊AB、AC的中點(diǎn),連接DE、DF,在不再連接其他線段的前提下,要使四邊形AEDF成為菱形,還需添加一個(gè)條件,這個(gè)條件可以是 ;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠BAC90°,以AC為邊向外作△ACD,FBC上一點(diǎn),連結(jié)AF

1)如圖1,若∠ACD90°,∠CAD30°,CD1,ABBF2,求FC的長(zhǎng)度.

2)如圖2,若ABAC,延長(zhǎng)DCAF延長(zhǎng)線于H點(diǎn),且∠AHD90°,∠BCH=∠CAD,連結(jié)BDAFM點(diǎn),求證:CD2MH

查看答案和解析>>

同步練習(xí)冊(cè)答案