【題目】在ABCD中,過點D作DE⊥AB于點E,點F 在邊CD上,DF=BE,連接AF,BF.
(1)求證:四邊形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求證:AF平分∠DAB.

【答案】
(1)證明:∵四邊形ABCD是平行四邊形,

∴AB∥CD.

∵BE∥DF,BE=DF,

∴四邊形BFDE是平行四邊形.

∵DE⊥AB,

∴∠DEB=90°,

∴四邊形BFDE是矩形;


(2)解:∵四邊形ABCD是平行四邊形,

∴AB∥DC,

∴∠DFA=∠FAB.

在Rt△BCF中,由勾股定理,得

BC= = =5,

∴AD=BC=DF=5,

∴∠DAF=∠DFA,

∴∠DAF=∠FAB,

即AF平分∠DAB.


【解析】(1)根據(jù)平行四邊形的性質(zhì),可得AB與CD的關系,根據(jù)平行四邊形的判定,可得BFDE是平行四邊形,再根據(jù)矩形的判定,可得答案;(2)根據(jù)平行線的性質(zhì),可得∠DFA=∠FAB,根據(jù)等腰三角形的判定與性質(zhì),可得∠DAF=∠DFA,根據(jù)角平分線的判定,可得答案.
【考點精析】掌握角平分線的性質(zhì)定理和勾股定理的概念是解答本題的根本,需要知道定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】“割圓術”是求圓周率的一種算法,公元263年左右,我國一位著名的數(shù)學家發(fā)現(xiàn)當圓的內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓面積,即所謂“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”. 請問上述著名數(shù)學家為

A.劉徽B.祖沖之C.楊輝D.趙爽

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OCDE的頂點CE分別在y軸的正半軸和x軸的正半軸上,OC=8OE=17,拋物線y=x2﹣3x+my軸相交于點A,拋物線的對稱軸與x軸相交于點B,與CD交于點K

1)將矩形OCDE沿AB折疊,點O恰好落在邊CD上的點F處.

B的坐標為( ),BK的長是 CK的長是 ;

求點F的坐標;

請直接寫出拋物線的函數(shù)表達式;

2)將矩形OCDE沿著經(jīng)過點E的直線折疊,點O恰好落在邊CD上的點G處,連接OG,折痕與OG相交于點H,點M是線段EH上的一個動點(不與點H重合),連接MGMO,過點GGP⊥OM于點P,交EH于點N,連接ON,點M從點E開始沿線段EH向點H運動,至與點N重合時停止,△MOG△NOG的面積分別表示為S1S2,在點M的運動過程中,S1S2(即S1S2的積)的值是否發(fā)生變化?若變化,請直接寫出變化范圍;若不變,請直接寫出這個值.

溫馨提示:考生可以根據(jù)題意,在備用圖中補充圖形,以便作答.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】9620000用科學記數(shù)法可表示為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線yax2bxc經(jīng)過A(-4,3)、B20)兩點,當x=3x=3時,這條拋物線上對應點的縱坐標相等.經(jīng)過點C0,-2)的直線lx軸平行,O為坐標原點.

1)求直線AB和這條拋物線的解析式;

2)以A為圓心,AO為半徑的圓記為⊙A,判斷直線l⊙A的位置關系,并說明理由;

3)設直線AB上的點D的橫坐標為-1Pm,n)是拋物線yax2bxc上的動點,當△PDO的周長最小時,求四邊形CODP的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩塊等腰直角三角形紙片AOBCOD按圖1所示放置,直角頂點重合在點O處,AB=25,CD=17.保持紙片AOB不動,將紙片COD繞點O逆時針旋轉(zhuǎn)α0°<α<90°)角度,如圖2所示.

1)利用圖2證明AC=BDACBD;

2)當BDCD在同一直線上(如圖3)時,求AC的長和α的正弦值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某中學今年年初開學后打算招聘一名數(shù)學老師,對三名前來應聘的數(shù)學老師A、B、C進行了考核,他們的筆試成績和說課成績(單位:分)分別用了兩種方式進行了統(tǒng)計,如表和圖1,

A

B

C

筆試

85

95

90

說課

80

85


(1)請將表和圖1的空缺部分補充完整;
(2)應聘的最后一個程序是由該校的24名數(shù)學教師進行投票,三位應聘者的得票情況如圖2(沒有棄權票,該校的每位教師只能選一位應聘教師),請計算每人的得票數(shù)(得票數(shù)可是整數(shù)喲)
(3)若每票計1分,該校將筆試、說課、得票三項測試得分按3:4:3的比例 確定個人成績,請計算三位應聘者的最后成績,并根據(jù)成績判斷誰能應聘成功.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】六月份某登山隊在山頂測得溫度為零下32度,此時山腳下的溫度為零上12度,則山頂?shù)臏囟缺壬侥_下的溫度低(
A.20°
B.﹣20℃
C.44℃
D.﹣44℃

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某物流公司引進A、B兩種機器人用來搬運某種貨物,這兩種機器人充滿電后可以連續(xù)搬運5小時,A種與某日0時開始搬運,過了1小時,B種機器人也開始搬運,如圖,線段OG表示A種機器人的搬運量yA(千克)與時間x(時)的函數(shù)圖象,線段EF表示B種機器人的搬運量yB(千克)與時間x(時)的函數(shù)圖象.根據(jù)圖象提供的信息,解答下列問題:
(1)求yB關于x的函數(shù)解析式;
(2)如果A、B兩種機器人連續(xù)搬運5個小時,那么B種機器人多搬運了多少千克?

查看答案和解析>>

同步練習冊答案