【題目】每年的6月5日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購買10臺(tái)節(jié)省能源的新設(shè)備,現(xiàn)有甲、乙兩種型號(hào)的設(shè)備可供選購. 經(jīng)調(diào)查:購買3臺(tái)甲型設(shè)備比購買2臺(tái)乙型設(shè)備多花16萬元,購買2臺(tái)甲型設(shè)備比購買3臺(tái)乙型設(shè)備少花6萬元.
(1)求甲、乙兩種型號(hào)設(shè)備的價(jià)格;
(2)該公司經(jīng)預(yù)算決定購買節(jié)省能源的新設(shè)備的資金不超過110萬元,你認(rèn)為該公司有哪幾種購買方案;
(3)在(2)的條件下,已知甲型設(shè)備的產(chǎn)量為240噸/月,乙型設(shè)備的產(chǎn)量為180噸/月.若每月要求總產(chǎn)量不低于2040噸,為了節(jié)約資金,請(qǐng)你為該公司設(shè)計(jì)一種最省錢的購買方案.
【答案】(1)12萬元和10萬元.(2)有6種購買方案.
(3)最省錢的購買方案為,選購甲型設(shè)備4臺(tái),乙型設(shè)備6臺(tái)
【解析】試題分析:(1)設(shè)甲,乙兩種型號(hào)設(shè)備每臺(tái)的價(jià)格分別為萬元和萬元,根據(jù)購買3臺(tái)甲型設(shè)備比購買2臺(tái)乙型設(shè)備多花16萬元,購買2臺(tái)甲型設(shè)備比購買3臺(tái)乙型設(shè)備少花6萬元.列出方程組,求出的值即可得出答案;
(2)設(shè)節(jié)省能源的新設(shè)備甲型設(shè)備臺(tái),乙型設(shè)備臺(tái),根據(jù)該公司購買節(jié)能設(shè)備的資金不超過110萬元,列出不等式,求出的值即可得出答案;
(3)因?yàn)楣疽竺吭碌漠a(chǎn)量不低于2040噸,得出解之求出的值,確定出方案,然后進(jìn)行比較即可.
試題解析:(1)設(shè)甲,乙兩種型號(hào)設(shè)備每臺(tái)的價(jià)格分別為萬元和萬元,
由題意得: 解得
∴甲,乙兩種型號(hào)設(shè)備每臺(tái)的價(jià)格分別為12萬元和10萬元.
(2)設(shè)購買甲型設(shè)備臺(tái),乙型設(shè)備臺(tái),
則:
∵取非負(fù)整數(shù)
∴=0,1,2,3,4,5,
∴ 有6種購買方案.
由題意:
∴
∴為4或5.
當(dāng)=4時(shí),購買資金為:12×4+10×6=108(萬元),
當(dāng)=5時(shí),購買資金為:12×5+10×5=110(萬元),
∴最省錢的購買方案為,選購甲型設(shè)備4臺(tái),乙型設(shè)備6臺(tái)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是用4個(gè)全等的直角三角形與1個(gè)小正方形鑲嵌而成的正方形圖案,已知大正方形面積為49,小正方形面積為4,若用,表示直角三角形的兩直角邊(),下列四個(gè)說法:
①,②,③,④.
其中說法正確的是 …………………………………………………………( )
A. ①② B. ①②③ C. ①②④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰直角△ABC中,AB=AC=8,以AB為直徑的半圓O交斜邊BC于D,則陰影部分的面積為(結(jié)果保留π)( )
A.
B.
C.
D.16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,OA=6,OC=4,F(xiàn)是AB上的一個(gè)動(dòng)點(diǎn)(F不與A,B重合),過點(diǎn)F的反比例函數(shù) 的圖象與BC邊交于點(diǎn)E.
(1)當(dāng)F為AB的中點(diǎn)時(shí),求該函數(shù)的解析式;
(2)當(dāng)k為何值時(shí),△EFA的面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為5,弦AB長為8,過AB的中點(diǎn)E有一動(dòng)弦CD(點(diǎn)C只在弦AB所對(duì)的劣弧上運(yùn)動(dòng),且不與A、B重合),設(shè)CE=x,ED=y,下列圖象中能夠表示y與x之間函數(shù)關(guān)系的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】威麗商場(chǎng)銷售A、B兩種商品,售出1件A種商品和4件B種商品所得利潤為600元;售出3件A種商品和5件B種商品所得利潤為1100元.
(1)求每件A種商品和每件B種商品售出后所得利潤分別為多少元?
(2)由于需求量大,A、B兩種商品很快售完,威麗商場(chǎng)決定再一次購進(jìn)A、B兩種商品共34件,如果將這34件商品全部售完后所得利潤不低于4000元,那么威麗商場(chǎng)至少需購進(jìn)多少件A種商品?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:如圖①,在正方形ABCD中,點(diǎn)P在邊CD上(不與點(diǎn)C、D重合),連接BP,將△BCP繞點(diǎn)C順時(shí)針旋轉(zhuǎn)至△DCE,點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)D.旋轉(zhuǎn)的角度是 度.應(yīng)用:將圖①中的BP延長交邊DE于點(diǎn)F,其它條件不變,如圖②,求∠BFE的度數(shù)。拓展:如圖②,若DP=2CP,BC=6,則四邊形ABED的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
(1)有理化因式:兩個(gè)含有根式的非零代數(shù)式相乘,如果它們的積不含有根式,那么這兩個(gè)代數(shù)式相互叫做有理化因式.例如:的有理化因式是;的有理化因式是.
(2)分母有理化:分母有理化又稱“有理化分母”,也就是把分母中的根號(hào)化去.指的是如果代數(shù)式中分母有根號(hào),那么通常將分子、分母同乘以分母的有理化因式,達(dá)到去分母中根號(hào)的目的.如:,
問題解決:
(1)填空:的有理化因式是______.(x≥1)
(2)直接寫出下列各式分母有理化的結(jié)果:
①_____;②______.
(3)計(jì)算:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若兩個(gè)一次函數(shù)與軸的交點(diǎn)關(guān)于軸對(duì)稱,則稱這兩個(gè)一次函數(shù)為“對(duì)心函數(shù)”,這兩個(gè)與軸的交點(diǎn)為“對(duì)心點(diǎn)”.
(1)寫出一個(gè)的對(duì)心函數(shù):________,這兩個(gè)“對(duì)心點(diǎn)”為:_______;
(2)直線經(jīng)過點(diǎn)和,直線的“對(duì)心函數(shù)”直線與軸的交點(diǎn)位于點(diǎn)的上方,且直線與直線交于點(diǎn),點(diǎn)為直線的“對(duì)心點(diǎn)”.點(diǎn)是動(dòng)直線上不與重合的一個(gè)動(dòng)點(diǎn),且,試探究與之間的數(shù)量關(guān)系,并說明理由.
(3)如圖,直線與其“對(duì)心函數(shù)”直線的交點(diǎn)位于第一象限,、分別為直線、的“對(duì)心點(diǎn)”,點(diǎn)為線段上一點(diǎn)(不含端點(diǎn)),連接;一動(dòng)點(diǎn)從出發(fā),沿線段以單位秒的速度運(yùn)動(dòng)到點(diǎn),再沿線段以單位秒的速度運(yùn)動(dòng)到點(diǎn)后停止,點(diǎn)在整個(gè)運(yùn)動(dòng)過程中所用最短時(shí)間為秒,求直線的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com