【題目】我們知道,三角形三個(gè)內(nèi)角平分線的交點(diǎn)叫做三角形的內(nèi)心,已知點(diǎn)I為△ABC的內(nèi)心.
(1)如圖1,連接AI并延長交BC于點(diǎn)D,若AB=AC=3,BC=2,求ID的長;
(2)如圖2,過點(diǎn)I作直線交AB于點(diǎn)M,交AC于點(diǎn)N.
①若MN⊥AI,求證:MI2=BMCN;
②如圖3,AI交BC于點(diǎn)D,若∠BAC=60°,AI=4,求的值.
【答案】(1);(2)見解析;(3).
【解析】
(1)如圖1中,作IE⊥AB于E.設(shè)ID=x.由△BEI≌△BDI,可得ID=IE=x,BD=BE=1,AE=2,在Rt△AEI中,根據(jù)AE2+EI2=AI2,可得解方程即可;
(2)如圖2中,連接BI、CI.首先證明△AMI≌△ANI(ASA),再證明△BMI∽△INC,可得,推出NI2=BMCN,由此即可解決問題;
(3)過點(diǎn)N作NG∥AD交MA的延長線于G.由∠ANG=∠AGN=30°,推出AN=AG,由AI∥NG,推出,可得即可推出
(1)如圖1中,作IE⊥AB于E.設(shè)ID=x.
∵AB=AC=3,AI平分∠BAC,
∴AD⊥BC,BD=CD=1,
在Rt△ABD中,
∵∠EBI=∠DBI,∠BEI=∠BDI=90°,BI=BI,
∴△BEI≌△BDI,
∴ID=IE=x,BD=BE=1,AE=2,
在Rt△AEI中,∵AE2+EI2=AI2,
∴
∴
∴
(2)如圖2中,連接BI、CI.
∵I是內(nèi)心,
∴∠MAI=∠NAI,
∵AI⊥MN,
∴∠AIM=∠AIN=90°,
∵AI=AI,
∴△AMI≌△ANI(ASA),
∴∠AMN=∠ANM,
∴∠BMI=∠CNI,
設(shè)∠BAI=∠CAI=α,∠ACI=∠BCI=β,
∴∠NIC=90°﹣α﹣β,
∵∠ABC=180°﹣2α﹣2β,
∴∠MBI=90°﹣α﹣β,
∴∠MBI=∠NIC,
∴△BMI∽△INC,
∴
∴NI2=BMCN,
∵NI=MI,
∴MI2=BMCN.
(3)過點(diǎn)N作NG∥AD交MA的延長線于G.
∴∠ANG=∠AGN=30°,
∴AN=AG,
∵AI∥NG,
∴
∴
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,點(diǎn)是邊的中點(diǎn),聯(lián)結(jié),若將沿翻折,點(diǎn)落在點(diǎn)處,聯(lián)結(jié),則______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)
(1)用配方法化成頂點(diǎn)式;
(2)求出頂點(diǎn)坐標(biāo)、對(duì)稱軸、最小值;
(3)求出拋物線與x軸、y軸交點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知O是坐標(biāo)原點(diǎn),B,C兩點(diǎn)的坐標(biāo)分別為(3,﹣1),(2,1).
(1)以O點(diǎn)為位似中心在y軸的左側(cè)將△OBC放大到兩倍,畫出圖形;
(2)分別寫出B,C兩點(diǎn)的對(duì)應(yīng)點(diǎn)B′,C′的坐標(biāo);
(3)求△OB′C′的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交與A(1,0),B(- 3,0)兩點(diǎn)
(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線交y軸與C點(diǎn),在該拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得△QAC的周長最小?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P、G是菱形ABCD的邊BC、DC的中點(diǎn),K是菱形的對(duì)角線BD上的動(dòng)點(diǎn),若BD=8,AC=6,則KP+KG的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=(x>0)的圖象交于A(m,6),B(3,n)兩點(diǎn)
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出使kx+b<成立的x的取值范圍;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形紙片ABCD的邊長為12,E是邊CD上一點(diǎn),連接AE,折疊該紙片,使點(diǎn)A落在AE上的G點(diǎn),并使折痕經(jīng)過點(diǎn)B,得到折痕BF,點(diǎn)F在AD上,若DE=5,則GE的為_______________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com