在一個不透明的口袋里,裝著10個大小和外形完全相同的小球,其中有5個紅球,3個黃球,2個白球.把它們攪勻后,下列哪些事件是隨機事件,請把序號填在橫線上:
①②
①②

①從口袋中任取一個球,它剛好是白球;
②從口袋中一次取出3個球,它們恰好全是黃球;
③從口袋中一次取出9個球,恰好紅、白、黃三種顏色齊全;
④從口袋中一次取出6個球,它們恰好是1個紅球、2個黃球、3個白球.
分析:確定事件包括必然事件和不可能事件:
必然事件指在一定條件下,一定發(fā)生的事件;
不可能事件是指在一定條件下,一定不發(fā)生的事件;
不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.
解答:解:①從口袋中任意取出一個球,它剛好是白球.可能發(fā)生,也可能不發(fā)生,是隨機事件;
②從口袋中一次取出3個球,它們恰好全是黃球.可能發(fā)生,也可能不發(fā)生,是隨機事件;
③從口袋中一次取出9個球,恰好紅,白,黃三種顏色都有.一定會發(fā)生,是必然事件;
④從口袋中一次取出6個球,它們恰好是1個紅球,2個黃球,3個白球.總共才有2個白球,一定不會發(fā)生,是不可能事件.
故答案為:①②.
點評:考查了隨機事件,解決本題要正確理解必然事件、不可能事件、隨機事件的概念,理解概念是解決基礎(chǔ)題的主要方法.確定事件發(fā)生的可能性,應(yīng)認(rèn)真分析事件的具體情況再作判斷.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在一個不透明的口袋里裝有4個球,分別是紅球2個,黃球1個,綠球1個,它們除顏色不同外其余都相同.閉上眼睛攪拌均勻后,第1次從袋中任意摸出1球(不放回),第2次再任意摸出1球,請你用畫樹狀圖或列表格的方法,求兩次都摸到紅球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在一個不透明的口袋里裝有僅顏色不同的黑、白兩種顏色的球20只,某學(xué)習(xí)小組做摸球?qū)嶒灒畬⑶驍噭蚝髲闹须S機摸出一個球,記下顏色,再把它放回袋中,不斷重復(fù),下表是活動進行中記下的一組數(shù)據(jù)
摸球的次數(shù)n 100 150 200 500 800 1000
摸到白球的次數(shù)m 58 96 116 295 484 601
摸到白球的頻率
m
n
0.58 0.64 0.58 0.59 0.605 0.601
(1)請你估計,當(dāng)n很大時,摸到白球的頻率將會接近
 
(精確到0.1).
(2)假如你去摸一次,你摸到白球的概率是
 
,摸到黑球的概率是
 

(3)試估算口袋中黑、白兩種顏色的球有多少只.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在一個不透明的口袋里裝有紅、黃、藍(lán)三種顏色的小球若干個(除顏色外其余都相同),其中紅球2個,藍(lán)球1個.若從中任意摸出一個球,它是藍(lán)球的概率為
14

(1)求袋中黃球的個數(shù);
(2)第一次任意摸出一個球(不放回),第二次再摸出一個球,求兩次摸到球的顏色是紅色與黃色這種組合(不考慮紅、黃球順序)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•常州)在一個不透明的口袋里裝有白、紅、黑三種顏色的小球,其中白球2只,紅球1只,黑球1只,它們除了顏色之外沒有其它區(qū)別,從袋中隨機地摸出1只球,記錄下顏色后放回攪勻,再摸出第二只球并記錄顏色,求兩次都摸出白球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在一個不透明的口袋里裝有只有顏色不同的黑、白兩種顏色的球共5只,某學(xué)習(xí)小組做摸球?qū)嶒,將球攪勻后從中隨機摸出一個球記下顏色,再把它放回袋中,不斷重復(fù).下表是活動進行中的一組統(tǒng)計數(shù)據(jù):
摸球的次數(shù)n 100 150 200 500 800 1000
摸到白球的次數(shù)m 58 96 116 295 484 601
摸到白球的次數(shù)頻率 0.58 0.64 0.58 0.59 0.605 0.601
(1)試估算口袋中黑、白兩種顏色的球各有多少只?
(2)請畫樹狀圖或列表計算:從中一次摸兩只球,這兩只球顏色不同的概率是多少?

查看答案和解析>>

同步練習(xí)冊答案