【題目】(1) 定義:直角三角形兩直角邊的平方和等于斜邊的平方.如:直角三角形的直角邊分別為3、4,則斜邊的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接寫出BC2=__________________

(2)應用:已知正方形ABCD的邊長為4,點PAD邊上的一點,AP= ,請利用“兩點之間線段最短”這一原理,在線段AC上畫出一點M,使MP+MD最小,并直接寫出最小值的平方為_____________

【答案】 36 17

【解析】試題分析:(1)由直角三角形兩直角邊的平方和等于斜邊的平方變形計算得出;

2

試題解析:

1BC2AB2AC21006436,

2如圖所示:作點P關(guān)于AC的對稱點P,連接P’DAC于點M,則點M即為所求,此時有MP+MD最小值,即為P’D的長度.

過點PPE CD于點E

∵正方形ABCD的邊長為4,點PAD邊上的一點,AP=

PE4,DEA P’=AP=1

DP2=DE2+P’E2=16+1=17.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某餐廳共有10名員工,所有員工工資的情況如下表:

請解答下列問題:

(1)餐廳所有員工的平均工資是多少?

(2)所有員工工資的中位數(shù)是多少?

(3)用平均數(shù)還是中位數(shù)描述該餐廳員工工資的一般水平比較恰當?

(4)去掉經(jīng)理和廚師甲的工資后,其他員工的平均工資是多少?它是否能反映餐廳員工工資的一般水平?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線AB分別與x軸、y軸交于B和A,與反比例函數(shù)的圖象交于C、D,CE⊥x軸于點E,tan∠ABO=0.5,OB=4,OE=2.
(1)求直線AB和反比例函數(shù)的解析式;
(2)求△OCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的半徑OD⊥弦AB于點C,連結(jié)AO并延長交⊙O于點E,連結(jié)EC.若AB=8,CD=2,則EC的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某職業(yè)高中機電班共有學生42人,其中男生人數(shù)比女生人數(shù)的2倍少3人.

(1)該班男生和女生各有多少人?

(2)某工廠決定到該班招錄30名學生,經(jīng)測試,該班男、女生每天能加工的零件數(shù)分別為50個和45個,為保證他們每天加工的零件總數(shù)不少于1460個,那么至少要招錄多少名男學生?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在1×3的正方形網(wǎng)格格點上放三枚棋子,按圖所示的位置己放置了兩枚棋子,若第三枚棋子隨機放在其他格點上,則以這三枚棋子所在的格點為頂點的三角形是直角三角形的概率為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,E是邊CD上一點BC=EC,CF⊥BEAB于點F,PEB延長線上一點,下列結(jié)論:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC,其中正確結(jié)論的個數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】Rt△ABC中,∠C=90°,點D、E分別是△ABC邊AC、BC上的點,點P是一動點.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.

(1)若點P在線段AB上,如圖(1)所示,且∠α=50°,則∠1+∠2= °;

(2)若點P在邊AB上運動,如圖(2)所示,則∠α、∠1、∠2之間有何關(guān)系?說明理由

(3)若點P在Rt△ABC斜邊BA的延長線上運動(CE<CD),則∠α、∠1、∠2之間有何關(guān)系?猜想并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BD是矩形ABCD的一條對角線.

(1)作BD的垂直平分線EF,分別交AD、BC于點E、F,垂足為點O(用尺規(guī)作圖,保留作圖痕跡,不要求寫作法);

(2)求證:AF=CE.

查看答案和解析>>

同步練習冊答案