【題目】過(guò)矩形ABCD的對(duì)角線(xiàn)AC的中點(diǎn)O作EF⊥AC,交BC邊于點(diǎn)E,交AD邊于點(diǎn)F,分別連接AE,CF.
(1)求證:四邊形AECF是菱形;
(2)若AB=6,AC=10,EC=,求EF的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2).
【解析】
(1)由矩形的性質(zhì)可得∠ACB=∠DAC,然后利用“ASA”證明△AOF和△COE全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得OE=OF,即可證四邊形AECF是菱形;
(2)由菱形的性質(zhì)可得:菱形AECF的面積=EC×AB=AC×EF,進(jìn)而得到EF的長(zhǎng).
解:(1)∵四邊形ABCD是矩形,
∴AD∥BC,
∴∠ACB=∠DAC,
∵O是AC的中點(diǎn),
∴AO=CO,
在△AOF和△COE中,
,
∴△AOF≌△COE(ASA),
∴OE=OF,且AO=CO,
∴四邊形AECF是平行四邊形,
又∵EF⊥AC,
∴四邊形AECF是菱形;
(2)∵菱形AECF的面積=EC×AB=AC×EF,
又∵AB=6,AC=10,EC=,
∴×6=×10×EF,
解得EF=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)A,C分別在x軸,y軸上,頂點(diǎn)B在第一象限,AB=1.將線(xiàn)段OA繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)60°得到線(xiàn)段OP,連接AP,反比例函數(shù)(k≠0)的圖象經(jīng)過(guò)P,B兩點(diǎn),則k的值為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AB=6cm,BC=3cm,點(diǎn)P從點(diǎn)A開(kāi)始沿AB邊向點(diǎn)B以1cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開(kāi)始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng),如果P、Q兩點(diǎn)同時(shí)出發(fā)。
(1)幾秒鐘后,P、Q間的距離等于4cm?
(2)幾秒種后,△BPQ的面積與四邊形CQPA的面積相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題8分)如圖,在五邊形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.
(1)求證:△ABC≌△AED;
(2)當(dāng)∠B=140°時(shí),求∠BAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系 XOY中,對(duì)于任意兩點(diǎn) (,)與 (,)的“非常距離”,給出如下定義: 若 ,則點(diǎn) 與點(diǎn) 的“非常距離”為 ;若 ,則點(diǎn) 與點(diǎn)的“非常距離”為 .
例如:點(diǎn) (1,2),點(diǎn) (3,5),因?yàn)?/span> ,所以點(diǎn) 與點(diǎn) 的“非常距離”為 ,也就是圖1中線(xiàn)段 Q與線(xiàn)段 Q長(zhǎng)度的較大值(點(diǎn) Q為垂直于 y軸的直線(xiàn) Q與垂直于 x軸的直線(xiàn) Q的交點(diǎn))。
(1)已知點(diǎn) A(-,0), B為 y軸上的一個(gè)動(dòng)點(diǎn),①若點(diǎn) A與點(diǎn) B的“非常距離”為2,寫(xiě)出一個(gè)滿(mǎn)足條件的點(diǎn) B的坐標(biāo);②直接寫(xiě)出點(diǎn) A與點(diǎn) B的“非常距離”的最小值;
(2)已知 C是直線(xiàn) 上的一個(gè)動(dòng)點(diǎn),①如圖2,點(diǎn) D的坐標(biāo)是(0,1),求點(diǎn) C與點(diǎn) D的“非常距離”的最小值及相應(yīng)的點(diǎn) C的坐標(biāo); ②如圖3, E是以原點(diǎn) O為圓心,1為半徑的圓上的一個(gè)動(dòng)點(diǎn),求點(diǎn) C與點(diǎn) E的“非常距離”的最小值及相應(yīng)的點(diǎn) E和點(diǎn) C的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)E為正方形ABCD的邊AB上一點(diǎn),EF⊥EC,且EF=EC,連接AF.
(1)求∠EAF的度數(shù);
(2)如圖2,連接FC交BD于M,交AD于N.求證:BD=AF+2DM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)平面內(nèi),已點(diǎn)A(3,0)、B(-5,3),將點(diǎn)A向左平移6個(gè)單位到達(dá)C點(diǎn),將點(diǎn)B向下平移6個(gè)單位到達(dá)D點(diǎn).
(1)寫(xiě)出C點(diǎn)、D點(diǎn)的坐標(biāo):C __________,D ____________ ;
(2)把這些點(diǎn)按A-B-C-D-A順次連接起來(lái),這個(gè)圖形的面積是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,AB∶BC=3∶2,∠DAB=60°,E在AB上,且AE∶EB=1∶2,F(xiàn)是BC的中點(diǎn),過(guò)D分別作DP⊥AF于P,DQ⊥CE于Q,則DP∶DQ等于
A.3∶4 B.∶ C.∶ D.∶
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線(xiàn)y=﹣x+3交x軸于點(diǎn)A,交y軸于點(diǎn)B,頂點(diǎn)為D的拋物線(xiàn)y=﹣x2+2mx﹣3m經(jīng)過(guò)點(diǎn)A,交x軸于另一點(diǎn)C,連接BD,AD,CD,如圖所示.
(1)直接寫(xiě)出拋物線(xiàn)的解析式和點(diǎn)A,C,D的坐標(biāo);
(2)動(dòng)點(diǎn)P在BD上以每秒2個(gè)單位長(zhǎng)的速度由點(diǎn)B向點(diǎn)D運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q在CA上以每秒3個(gè)單位長(zhǎng)的速度由點(diǎn)C向點(diǎn)A運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)停止運(yùn)動(dòng)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.PQ交線(xiàn)段AD于點(diǎn)E.
①當(dāng)∠DPE=∠CAD時(shí),求t的值;
②過(guò)點(diǎn)E作EM⊥BD,垂足為點(diǎn)M,過(guò)點(diǎn)P作PN⊥BD交線(xiàn)段AB或AD于點(diǎn)N,當(dāng)PN=EM時(shí),求t的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com