【題目】設(shè)點A(x1 , y1)和B(x2 , y2)是反比例函數(shù)y= 圖象上的兩個點,當(dāng)x1<x2<0時,y1<y2 , 則一次函數(shù)y=﹣2x+k的圖象不經(jīng)過的象限是( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限

【答案】A
【解析】解:∵點A(x1 , y1)和B(x2 , y2)是反比例函數(shù)y= 圖象上的兩個點,當(dāng)x1<x2<0時,y1<y2 ,
∴x1<x2<0時,y隨x的增大而增大,
∴k<0,
∴一次函數(shù)y=﹣2x+k的圖象不經(jīng)過的象限是:第一象限.
故選:A.
【考點精析】根據(jù)題目的已知條件,利用反比例函數(shù)的圖象和反比例函數(shù)的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形.有兩條對稱軸:直線y=x和 y=-x.對稱中心是:原點;性質(zhì):當(dāng)k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減。 當(dāng)k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場計劃購進(jìn)、兩種新型節(jié)能臺燈共盞,這兩種臺燈的進(jìn)價、售價如表所示:

)若商場預(yù)計進(jìn)貨款為元,則這兩種臺燈各購進(jìn)多少盞?

)若商場規(guī)定型臺燈的進(jìn)貨數(shù)量不超過型臺燈數(shù)量的倍,應(yīng)怎樣進(jìn)貨才能使商場在銷售完這批臺燈時獲利最多?此時利潤為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公園的門票每張10元,為了吸引更多的游客,該公園管理除保留原來的售票方法外,還推出了一種“購買年卡”的優(yōu)惠方法,年卡分為A、B、C三種:A卡每張120元,持卡進(jìn)入不用再買門票;B卡每張60元,持卡進(jìn)入公園需要再買門票,每張2元;C卡每張30元,持票進(jìn)入公園時,購買每張4元的門票.

(1)如果你只選擇一種購買門票的方式,并且你計劃在一年中用100元花在去該公園玩的門票上,請問哪種購票方式可使你進(jìn)入該公園的次數(shù)最多?

(2)求一年中進(jìn)入該公園至少多少次,購買A類年票比較合算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,BDABC的中線,CEBD于點E,AFBD,BD的延長線于點F.

(1)試探索BE,BFBD三者之間的數(shù)量關(guān)系,并加以證明;

(2)連接AE,CF,求證:AECF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABO縮小后變?yōu)椤鰽′B′O,其中A、B的對應(yīng)點分別為A′、B′點A、B、A′、B′均在圖中在格點上.若線段AB上有一點P(m,n),則點P在A′B′上的對應(yīng)點P′的坐標(biāo)為(
A.( ,n)
B.(m,n)
C.(m,
D.(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明有5張寫著不同的數(shù)字的卡片,請你按要求抽出卡片,完成下列各問題:

(1)從中取出2張卡片,使這2張卡片上數(shù)字乘積最大,最大值是   

(2)從中取出2張卡片,使這2張卡片上數(shù)字相除的商最小,最小值是   ;

(3)從中取出4張卡片,用學(xué)過的運算方法,使結(jié)果為24.寫出運算式子:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點A、B均在由面積為1的相同小矩形組成的網(wǎng)格的格點上,建立平面直角坐標(biāo)系如圖所示.若P是x軸上使得|PA﹣PB|的值最大的點,Q是y軸上使得QA+QB的值最小的點,則OPOQ=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某晚報“百姓熱線”一周內(nèi)接到熱線電話的統(tǒng)計圖,其中有關(guān)環(huán)境保護問題的電話最多,共70個,請回答下列問題:

(1)本周“百姓熱線”共接到熱線電話多少個?

(2)有關(guān)道路交通問題的電話多少個?

(3)計算其他各類電話的個數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列一段文字,然后回答下列問題.

已知平面內(nèi)兩點 M(x1,y1)、N(x2,y2),則這兩點間的距離可用下列公式計算: MN=

例如:已知 P(3,1)、Q(1,﹣2),則這兩點間的距離 PQ==

特別地,如果兩點 M(x1,y1)、N(x2,y2)所在的直線與坐標(biāo)軸重合或平行于坐標(biāo)軸或垂直于坐 標(biāo)軸,那么這兩點間的距離公式可簡化為 MN= x1﹣x2 丨或丨 y1﹣y2

(1)已知 A(1,2)、B(﹣2,﹣3),試求 A、B 兩點間的距離;

(2)已知 A、B 在平行于 x 軸的同一條直線上,點 A 的橫坐標(biāo)為 5,點 B 的橫坐標(biāo)為﹣1,

試求 A、B 點間的距離;

(3)已知ABC 的頂點坐標(biāo)分別為 A(0,4)、B(﹣1,2)、C(4,2),你能判定ABC 的形狀 嗎?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案