【題目】.如圖 1,AB∥CD,直線(xiàn) EF 交 AB 于點(diǎn) E,交 CD 于點(diǎn) F,點(diǎn) G 在 CD 上,點(diǎn) P在直線(xiàn) EF 左側(cè),且在直線(xiàn) AB 和 CD 之間,連接 PE,PG.
(1) 求證: ∠EPG=∠AEP+∠PGC;
(2) 連接 EG,若 EG 平分∠PEF,∠AEP+ ∠ PGE=110°,∠PGC=∠EFC,求∠AEP 的度數(shù).
(3) 如圖 2,若 EF 平分∠PEB,∠PGC 的平分線(xiàn)所在的直線(xiàn)與 EF 相交于點(diǎn) H,則∠EPG 與∠EHG之間的數(shù)量關(guān)系為 .
【答案】(1)見(jiàn)解析;(2)40°;(3) ∠EPG=1800-2∠EHG .
【解析】
(1) 過(guò)點(diǎn)作∥,則∥,根據(jù)平行線(xiàn)的性質(zhì)可得, ,從而可證結(jié)論成立;
(2)過(guò)點(diǎn)作∥,可證,由平分,可證,從而 ,由∥ 可證,從而 ,結(jié)合,可求出結(jié)論;
(3)由AB∥CD,可證∠BEH=∠EFG,從而∠AEP=180°-2∠EFG①,由三角形外角的性質(zhì)得,∠EFG=∠EHG+∠HGF=EHG+∠CGP②,由①和②可得,∠AEP+∠CGP=180°-2∠EHG,又由(1)知,∠EPG=∠AEP+∠PGC,從而∠EPG=1800-2∠EHG .
(1) 過(guò)點(diǎn)作∥,
∵
∴∥,
∴ , ,
∴ ∠EPG=∠AEP+∠PGC ;
(2)過(guò)點(diǎn)作∥,
1
∴ ,
,
∴ ,
∵平分,
∴ ,
∴.
∵ ,
又∵ ∥ ,
∴ ,
即,
∴ ,
∴ .
∵ ,
∴ ,
(3)∠EPG=1800-2∠EHG .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果一個(gè)多邊形的內(nèi)角和等于1800°,則這個(gè)多邊形是_____邊形;如果一個(gè)n邊形每一個(gè)內(nèi)角都是135°,則n=_____;如果一個(gè)n邊形每一個(gè)外角都是36°,則n=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的對(duì)角線(xiàn)AC,BD相交于點(diǎn)O,過(guò)點(diǎn)D作DE∥AC且DE=OC,連接CE,OE.
(1)求證:OE=CD;
(2)若菱形ABCD的邊長(zhǎng)為4,∠ABC=60°,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明的手機(jī)沒(méi)電了,現(xiàn)有一個(gè)只含A,B,C,D四個(gè)同型號(hào)插座的插線(xiàn)板(如圖,假設(shè)每個(gè)插座都適合所有的充電插頭,且被選中的可能性相同),請(qǐng)計(jì)算:
(1)若小明隨機(jī)選擇一個(gè)插座插入,則插入A的概率為;
(2)現(xiàn)小明對(duì)手機(jī)和學(xué)習(xí)機(jī)兩種電器充電,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法表示出兩個(gè)插頭插入插座的所有可能情況,并計(jì)算兩個(gè)插頭插在相鄰插座的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果,矩形ABCD中,點(diǎn)E在AB上,點(diǎn)F在CD上,點(diǎn)G,H在對(duì)角線(xiàn)AC上,且CH=AG,CF=AE.
(1)求證:△AGE≌△CHF;
(2)若AB=8,AD=4,且GH恰好平分∠FGE,求CF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABC中,BO、CO分別平分∠ABC和∠ACB.計(jì)算:
(1)若∠A 60°,求∠BOC的度數(shù);
(2)若∠A 100°, 則∠BOC的度數(shù)是多少?
(3)若∠A 120°, 則∠BOC的度數(shù)又是多少?
(4)由(1)、(2)、(3),你發(fā)現(xiàn)了什么規(guī)律?請(qǐng)用一個(gè)等式將這個(gè)規(guī)律表示出來(lái).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形EFGH的三個(gè)頂點(diǎn)E、G、H分別在正方形ABCD的邊AB、CD、DA上,連接CF.
(1)求證:∠HEA=∠CGF;
(2)當(dāng)AH=DG時(shí),求證:菱形EFGH為正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某活動(dòng)小組為了估計(jì)裝有5個(gè)白球和若干個(gè)紅球(每個(gè)球除顏色外都相同)的袋中紅球接近多少個(gè),在不將袋中球倒出來(lái)的情況下,分小組進(jìn)行摸球試驗(yàn),兩人一組,共20組進(jìn)行摸球?qū)嶒?yàn).其中一位學(xué)生摸球,另一位學(xué)生記錄所摸球的顏色,并將球放回袋中搖勻,每一組做400次試驗(yàn),匯總起來(lái)后,摸到紅球次數(shù)為6000次.
(1)估計(jì)從袋中任意摸出一個(gè)球,恰好是紅球的概率是多少?
(2)請(qǐng)你估計(jì)袋中紅球接近多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知CD⊥AB于點(diǎn)D,BE⊥AC于點(diǎn)E,CD、BE交于點(diǎn)O,且AO平分∠BAC,則圖中的全等三角形共有( 。
A. 1對(duì) B. 2對(duì) C. 3對(duì) D. 4對(duì)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com