【題目】小明和小亮分別從甲地和乙地同時(shí)出發(fā),沿同一條路相向而行,小明開始跑步,中途改為步行,到達(dá)乙地恰好用小亮騎自行車以的速度直接到甲地,兩人離甲地的路程與各自離開出發(fā)地的時(shí)間之間的函數(shù)圖象如圖所示,
甲、乙兩地之間的路程為______m,小明步行的速度為______;
求小亮離甲地的路程y關(guān)于x的函數(shù)表達(dá)式,并寫出自變量x的取值范圍;
求兩人相遇的時(shí)間.
【答案】(1)8000,100;(2);(3)分鐘
【解析】
認(rèn)真分析圖象得到路程與速度數(shù)據(jù);
采用方程思想列出小東離家路程y與時(shí)間x之間的函數(shù)關(guān)系式;
兩人相遇實(shí)際上是函數(shù)圖象的交點(diǎn).
結(jié)合題意和圖象可知,線段CD為小亮路程與時(shí)間函數(shù)圖象,折線為小明路程與時(shí)間圖象,
則甲、乙兩地之間的路程為8000米,小明步行的速度,
小亮從離甲地8000m處的乙地以的速度去甲地,則xmin時(shí),
小亮離甲地的路程,
自變量x的取值范圍為:
,
直線OA解析式為:
,
,
兩人相遇時(shí)間為第分鐘.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點(diǎn)I是△ABC的內(nèi)心,∠AIC=124°,點(diǎn)E在AD的延長線上,則∠CDE的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點(diǎn)G,連結(jié)AG、CF.下列結(jié)論:
①△ABG≌△AFG;②BG=GC;③AG∥CF;④.
其中正確結(jié)論的個(gè)數(shù)是( )
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線y=x+b與雙曲線y=(x<0)交于點(diǎn)A(﹣1,﹣5),并分別與x軸、y軸交于點(diǎn)C、B.
(1)求出b、m的值;
(2)點(diǎn)D在x軸的正半軸上,若以點(diǎn)D、C、B組成的三角形與△OAB相似,試求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠A=40°,若點(diǎn)O是△ABC的外心,則∠BOC=_____°;若點(diǎn)I是△ABC的內(nèi)心,則∠BIC=_____°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對某一個(gè)函數(shù)給出如下定義:如果存在常數(shù),對于任意的函數(shù)值,都滿足≤,那么稱這個(gè)函數(shù)是有上界函數(shù);在所有滿足條件的中,其最小值稱為這個(gè)函數(shù)的上確界.例如,函數(shù), ≤2,因此是有上界函數(shù),其上確界是2.如果函數(shù)(≤x≤, <)的上確界是,且這個(gè)函數(shù)的最小值不超過2,則的取值范圍是( )
A. ≤ B. C. ≤ D. ≤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名同學(xué)分別進(jìn)行6次射擊訓(xùn)練,訓(xùn)練成績(單位:環(huán))如下表 對他們的訓(xùn)練成績作如下分析,其中說法正確的是( )
A. 他們訓(xùn)練成績的平均數(shù)相同
B. 他們訓(xùn)練成績的中位數(shù)不同
C. 他們訓(xùn)練成績的方差不同
D. 他們訓(xùn)練成績的眾數(shù)不同
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
“三角形的三個(gè)頂點(diǎn)確定一個(gè)圓,這個(gè)圓叫做三角形的外接圓、外接圓的圓心叫做三角形的外心,這個(gè)三角形叫做這個(gè)圓的內(nèi)接三角形。”(蘇科版《數(shù)學(xué)》九上 2.3確定圓的條件)
問題初探:
(1)三角形的外心到三角形的_____________距離相等
(2)若點(diǎn)O是△ABC的外心,試探索∠BOC與∠BAC之間的數(shù)量關(guān)系。
(3)如圖,在Rt△ABC中,∠ACB=90°,AC=BC。將線段BC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)30°到BD,連接AD、CD。用直尺和圓規(guī)在圖中作出△BCD的外心O,并求∠ADB的度數(shù)。(保留作圖痕跡,不寫作法。)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,(b為常數(shù))的圖象與x軸,y軸分別交于點(diǎn)A,B與反比例函數(shù)(x>0)的圖象交于點(diǎn)C.若ACBC=4,則k的值為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com