如圖,已知經(jīng)過(guò)點(diǎn)D(2,﹣)的拋物線y=(x+1)(x﹣3)(m為常數(shù),且m>0)與x軸交于點(diǎn)A、B(點(diǎn)A位于B的左側(cè)),與y軸交于點(diǎn)C.
(1)填空:m的值為 ,點(diǎn)A的坐標(biāo)為 ;
(2)根據(jù)下列描述,用尺規(guī)完成作圖(保留作圖痕跡,不寫(xiě)作法):連接AD,在x軸上方作射線AE,使∠BAE=∠BAD,過(guò)點(diǎn)D作x軸的垂線交射線AE于點(diǎn)E;
(3)動(dòng)點(diǎn)M、N分別在射線AB、AE上,求ME+MN的最小值;
(4)t是過(guò)點(diǎn)A平行于y軸的直線,P是拋物線上一點(diǎn),過(guò)點(diǎn)P作l的垂線,垂足為點(diǎn)G,請(qǐng)你探究:是否存在點(diǎn)P,使以P、G、A為頂點(diǎn)的三角形與△ABD相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
解:(1)∵拋物線y=(x+1)(x﹣3)經(jīng)過(guò)點(diǎn)D(2,﹣),
∴m=,
把m=代入y=(x+1)(x﹣3),得y=(x+1)(x﹣3),
即y=x2﹣x﹣;
令y=0,得(x+1)(x﹣3)=0,
解得x=﹣1或3,
∴A(﹣1,0),B(3,0);
(2)如圖1所示;
(3)過(guò)點(diǎn)D作射線AE的垂線,垂足為N,交AB于點(diǎn)M,設(shè)DE與x軸交于點(diǎn)H,如圖2,
由(1)(2)得點(diǎn)D與點(diǎn)E關(guān)于x軸對(duì)稱,
∴MD=ME,
∵AH=3,DH=,
∴AD=2,
∴∠BAD=∠BAE=30°,
∴∠DAN=60°,
∴sin∠DAN=,
∴sin60°=,
∴DN=3,
∵此時(shí)DN的長(zhǎng)度即為ME+MN的最小值,
∴ME+MN的最小值為3;
(4)假設(shè)存在點(diǎn)P,使以P、G、A為頂點(diǎn)的三角形與△ABD相似,如圖3,
∵P是拋物線上一點(diǎn),
∴設(shè)點(diǎn)P坐標(biāo)(x,x2﹣x﹣);
∴點(diǎn)G坐標(biāo)(﹣1,x2﹣x﹣),
∵A(﹣1,0),B(3,0),D(2,﹣);
∴AB=4,BD=2,AD=2,
∴△ABD為直角三角形的形狀,
△ABD與以P、G、A為頂點(diǎn)的三角形相似,
分兩種情況:
①△ABD∽△PAG,
∴=,
∴2(x+1)=2(x2﹣x﹣),
解得x1=4,x2=﹣1(舍去),
∴P(4,);
②△ABD∽△APG,
∴=,
∴2(x+1)=2(x2﹣x﹣),
解得x1=6,x2=﹣1(舍去),
∴P(6,7);
∴點(diǎn)P坐標(biāo)(4,)或(6,7).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,AB為⊙O的直徑,PD切⊙O于點(diǎn)C,與BA的延長(zhǎng)線交于點(diǎn)D,DE⊥PO交PO延長(zhǎng)線于點(diǎn)E,連接PB,∠EDB=∠EPB.
(1)求證:PB是的切線.
(2)若PB=6,DB=8,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
.小球在如圖所示的地板上自由地滾動(dòng),并隨機(jī)地停留在某塊方磚上,那么小球最終停留在黑色區(qū)域的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
某校申報(bào)“跳繩特色運(yùn)動(dòng)”學(xué)校一年后,抽樣調(diào)查了部分學(xué)生的“1分鐘跳繩”成績(jī),并制成了下面的頻數(shù)分布直方圖(每小組含最小值,不含最大值)和扇形圖.
(1)補(bǔ)全頻數(shù)分布直方圖,扇形圖中m= ;
(2)若把每組中各個(gè)數(shù)據(jù)用這組數(shù)據(jù)的中間值代替(如A組80≤x<100的中間值是=90次),則這次調(diào)查的樣本平均數(shù)是多少?
(3)如果“1分鐘跳繩”成績(jī)大于或等于120次為優(yōu)秀,那么該校2100名學(xué)生中“1分鐘跳繩”成績(jī)?yōu)閮?yōu)秀的大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
.在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)A、B、C的坐標(biāo)分別為(﹣1,1)、(﹣1,﹣1)、(1,﹣1),則頂點(diǎn)D的坐標(biāo)為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
下列計(jì)算正確的是( )
A.x4+x4=x16 B. (﹣2a)2=﹣4a2 C. x7÷x5=x2 D. m2•m3=m6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在矩形ABCD中,AD=2,CD=1,連接AC,以對(duì)角線AC為邊,按逆時(shí)針?lè)较蜃骶匦蜛BCD的相似矩形AB1C1C,再連接AC1,以對(duì)角線AC1為邊作矩形AB1C1C的相似矩形AB2C2C1,…,按此規(guī)律繼續(xù)下去,則矩形ABnCnCn﹣1的面積為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com