【題目】我們知道,可以單獨(dú)用正三角形、正方形或正六邊形鑲嵌平面.
如果我們要同時(shí)用兩種不同的正多邊形鑲嵌平面,可能設(shè)計(jì)出幾種不同的組合方案?
問題解決:
猜想1:是否可以同時(shí)用正方形、正八邊形兩種正多邊形組合進(jìn)行平面鑲嵌?
驗(yàn)證1:在鑲嵌平面時(shí),設(shè)圍繞某一點(diǎn)有x個(gè)正方形和y個(gè)正八邊形的內(nèi)角可以拼成一個(gè)周角.根據(jù)題意,可得方程:90x+ y=360,整理得:2x+3y=8,
我們可以找到方程的正整數(shù)解為 .
結(jié)論1:鑲嵌平面時(shí),在一個(gè)頂點(diǎn)周圍圍繞著1個(gè)正方形和2個(gè)正八邊形的內(nèi)角可以拼成一個(gè)周角,所以同時(shí)用正方形和正八邊形兩種正多邊形組合可以進(jìn)行平面鑲嵌.
猜想2:是否可以同時(shí)用正三角形和正六邊形兩種正多邊形組合進(jìn)行平面鑲嵌?若能,請按照上述方法進(jìn)行驗(yàn)證,并寫出所有可能的方案;若不能,請說明理由.
【答案】解:在鑲嵌平面時(shí),設(shè)圍繞某一點(diǎn)有a個(gè)正三角形和b個(gè)正六邊形的內(nèi)角可以拼成一個(gè)周角,
根據(jù)題意,可得方程:60a+120b=360.
整理得:a+2b=6,
方程的正整數(shù)解為 , .
所以可以同時(shí)用正三角形和正六邊形兩種正多邊形組合進(jìn)行平面鑲嵌,在一個(gè)頂點(diǎn)周圍圍繞2個(gè)正三角形和2個(gè)正六邊形或者圍繞著4個(gè)正三角形和1個(gè)正六邊形.
【解析】在鑲嵌平面時(shí),設(shè)圍繞某一點(diǎn)有a個(gè)正三角形和b個(gè)正六邊形的內(nèi)角可以拼成一個(gè)周角,根據(jù)平面鑲嵌的體積可得方程:60a+120b=360.整理得:a+2b=6,求出正整數(shù)解即可.
【考點(diǎn)精析】利用平面圖形的鑲嵌對題目進(jìn)行判斷即可得到答案,需要熟知用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做平面圖形的鑲嵌.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:三角形ABC中,∠A=90°,AB=AC,D為BC的中點(diǎn),
(1)如圖,E,F(xiàn)分別是AB,AC上的點(diǎn),且BE=AF,求證:△DEF為等腰直角三角形;
(2)若E,F(xiàn)分別為AB,CA延長線上的點(diǎn),仍有BE=AF,其他條件不變,那么,△DEF是否仍為等腰直角三角形?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】Rt△ABC中,∠C=90°,點(diǎn)D、E是△ABC邊AC、BC上的點(diǎn),點(diǎn)P是一動(dòng)點(diǎn).令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.
(1)若點(diǎn)P在線段AB上,如圖(1),∠α=50°,則∠1+∠2=°
(2)若點(diǎn)P在邊AB上運(yùn)動(dòng),如圖(2)所示,則∠α、∠1、∠2之間的關(guān)系為:
(3)若點(diǎn)P運(yùn)動(dòng)到邊AB的延長線上,如圖(3)所示,則∠α、∠1、∠2之間有何關(guān)系?猜想并說明理由.
(4)若點(diǎn)P運(yùn)動(dòng)到△ABC形外,如圖(4),則∠α、∠1、∠2之間的關(guān)系為: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校需購買一批課桌椅供學(xué)生使用,已知A型課桌椅230元/套,B型課桌椅200元/套.
(1)該校購買了A,B型課桌椅共250套,付款53000元,求A,B型課桌椅各買了多少套?
(2)因?qū)W生人數(shù)增加,該校需再購買100套A,B型課桌椅,現(xiàn)只有資金22000元,最多能購買A型課桌椅多少套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】16位參加百米半決賽同學(xué)的成績各不相同,按成績?nèi)∏?/span>8位進(jìn)入決賽.如果小劉知道了自己的成績后,要判斷能否進(jìn)入決賽,其他15位同學(xué)成績的下列數(shù)據(jù)中,能使他得出結(jié)論的是( )
A. 平均數(shù) B. 眾數(shù)
C. 中位數(shù) D. 方差
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直線上順次取A,B,C三點(diǎn),分別以AB,BC為邊長在直線的同側(cè)作正三角形,作得兩個(gè)正三角形的另一頂點(diǎn)分別為D,E.
(1)如圖①,連結(jié)CD,AE,求證:CD=AE;
(2)如圖②,若AB=1,BC=2,求DE的長;
(3)如圖③,將圖②中的正三角形BEC繞B點(diǎn)作適當(dāng)?shù)男D(zhuǎn),連結(jié)AE,若有DE2+BE2=AE2 , 試求∠DEB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】股民小張五買某公司股票1000股,每股14.80元,表為第二周星期一至星期五每日該股票漲跌情況
(1)星期三收盤時(shí),每股是多少元?
(2)本周內(nèi)最高價(jià)是每股多少元?最低價(jià)是每股多少元?
(3)已知小張買進(jìn)股票時(shí)付了成交額0.15%的手續(xù)費(fèi),賣出時(shí)付了成交額0.15%的手續(xù)費(fèi)和成交額0.1%的交易稅,如果小張?jiān)谛瞧谖迨毡P前將全部股票賣出,那么他的收益情況如何?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+5與雙曲線(x>0)相交于A,B兩點(diǎn),與x軸相交于C點(diǎn),△BOC的面積是.若將直線y=﹣x+5向下平移1個(gè)單位,則所得直線與雙曲線(x>0)的交點(diǎn)有( )
A.0個(gè) B.1個(gè) C.2個(gè) D.0個(gè),或1個(gè),或2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,正方形A1B1C1O1、A2B2C2C1、…、AnBnCnCn﹣1按如圖所示的方式放置,其中點(diǎn)A1、A2、A3、…、An均在一次函數(shù)y=kx+b的圖象上,點(diǎn)C1、C2、C3、…、Cn均在x軸上.若點(diǎn)B1的坐標(biāo)為(1,1),點(diǎn)B2的坐標(biāo)為(3,2),則點(diǎn)An的坐標(biāo)為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com