在等邊三角形ABC所在的平面內(nèi),求作一點(diǎn)P,使△PAB、△PBC、△PAC都是等腰三角形.你能找到幾個(gè)這樣的點(diǎn),畫圖描述它的位置.

答案:
解析:

有10個(gè).


提示:

提示:等邊三角形中線的交點(diǎn)是一個(gè),另外等邊三角形每條對(duì)稱軸上有三個(gè),共10個(gè)點(diǎn),如圖所示.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖所示,在等邊三角形ABC中,∠B、∠C的平分線交于點(diǎn)O,OB和OC的垂直平分線交BC于E、F,試用你所學(xué)的知識(shí)說(shuō)明BE=EF=FC的道理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在等邊三角形ABC中,∠B、∠C的平分線交于點(diǎn)O,OB和OC的垂直平分線交BC于E、F,試探索BE、EF、FC的大小關(guān)系;并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

數(shù)學(xué)課上,李老師出示了如下框中的題目.

小明與同桌小聰討論后,進(jìn)行了如下解答:
(1)特殊情況,探索結(jié)論
當(dāng)點(diǎn)E為AB的中點(diǎn)時(shí),如圖1,確定線段AE與DB的大小關(guān)系,請(qǐng)你直接寫出結(jié)論:AE
=
=
DB(填“>”,“<”或“=”).

(2)一般情況,證明結(jié)論:
如圖2,過(guò)點(diǎn)E作EF∥BC,交AC于點(diǎn)F.(請(qǐng)你繼續(xù)完成對(duì)以上問(wèn)題(1)中所填寫結(jié)論的證明)
(3)拓展結(jié)論,設(shè)計(jì)新題:
在等邊三角形ABC中,點(diǎn)E在直線AB上,點(diǎn)D在直線BC上,且ED=EC. 若△ABC的邊長(zhǎng)為1,AE=2,則CD的長(zhǎng)為
1或3
1或3
(請(qǐng)直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等邊三角形ABC的頂點(diǎn)A、C處各有一只蝸牛,它們同時(shí)出發(fā),分別以相同的速度由A向B和由C向A爬行,經(jīng)過(guò)t分鐘后,它們分別爬行到了D、E處,設(shè)DC與BE的交點(diǎn)為F.
(1)當(dāng)點(diǎn)D、E不是AB、AC的中點(diǎn)時(shí),圖中有全等三角形嗎?如果沒(méi)有,請(qǐng)說(shuō)明理由;如果有,請(qǐng)找出所有的全等三角形,并選擇其中一對(duì)進(jìn)行證明.
(2)問(wèn)蝸牛在爬行過(guò)程中DC與BE所成的∠BFC的大小有無(wú)變化?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【問(wèn)題】如圖甲,在等邊三角形ABC內(nèi)有一點(diǎn)P,且PA=2,PB=
3
,PC=1,求∠BPC度數(shù)的大小和等邊三角形ABC的邊長(zhǎng).
【探究】解題思路是:將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,如圖乙所示,連接PP′.
(1)△P′PB是
 
三角形,△PP′A是
 
三角形,∠BPC=
 
°;
(2)利用△BPC可以求出△ABC的邊長(zhǎng)為
 

【拓展應(yīng)用】
如圖丙,在正方形ABCD內(nèi)有一點(diǎn)P,且PA=
5
,BP=
2
,PC=1;
(3)求∠BPC度數(shù)的大;
(4)求正方形ABCD的邊長(zhǎng).
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案