如圖,點(diǎn)D在⊙O的直徑AB的延長線上,點(diǎn)C在⊙O上,AC=CD,∠D=30°,
求證:CD是⊙O的切線.

【答案】分析:要證明CD是⊙O的切線,即證明OC⊥CD.連接OC,由AC=CD,∠D=30°,則∠A=∠D=30°,得到∠COD=60°,所以∠OCD=90°.
解答:證明:連接OC,如圖,
∵AC=CD,∠D=30°,
∴∠A=∠D=30°,
∵OA=OC,
∴∠ACO=∠A=30°,
∴∠COD=60°,
∴∠OCD=90°,即OC⊥CD.
∴CD是⊙O的切線.
點(diǎn)評:本題考查了圓的切線的判定方法.經(jīng)過半徑的外端點(diǎn)與半徑垂直的直線是圓的切線.當(dāng)已知直線過圓上一點(diǎn),要證明它是圓的切線,則要連接圓心和這個(gè)點(diǎn),證明這個(gè)連線與已知直線垂直即可;當(dāng)沒告訴直線過圓上一點(diǎn),要證明它是圓的切線,則要過圓心作直線的垂線,證明垂線段等于圓的半徑.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

28、如圖所示,在直角坐標(biāo)系中,矩形OBCD的邊長OB=4,OD=2.
(1)P是OB上一個(gè)動點(diǎn),動點(diǎn) Q在 PB或其延長線上運(yùn)動,OP=PQ,作以 PQ為一邊的正方形PQRS,點(diǎn)P從O點(diǎn)開始沿射線OB方向運(yùn)動,直到點(diǎn)P與點(diǎn)B重合,設(shè)OP=x,正方形PQRS與矩形OBCD重疊部分的面積為y,寫出y與x的函數(shù)關(guān)系式;
(2)在(1)中,當(dāng)x分別取1和3時(shí),y的值分別是多少?
(3)已知直線l:y=ax-a都經(jīng)過一定點(diǎn)A,求經(jīng)過定點(diǎn)A且把矩形OBCD面積平均分成兩部分的直線的關(guān)系式和A點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖是一張傳說中的“藏寶圖”,圖上除標(biāo)明了A﹑B﹑C三點(diǎn)的位置以外,并沒有直接標(biāo)出”寶藏”的位置,但圖上注有尋找“寶藏”的方法:把直角△ABC補(bǔ)成矩形,使矩形的面積是A精英家教網(wǎng)BC的2倍,“寶藏”就在矩形未知的頂點(diǎn)處,那么“寶藏”的位置可能是
 
.(用坐標(biāo)表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在直角坐標(biāo)系中,矩形OBCD的邊長OB=4,OD=2,點(diǎn)P是射線OB上一個(gè)動點(diǎn),動點(diǎn)Q在PB或其延長線上運(yùn)動,OP=PQ,作以PQ為一邊的正方形PQRS,點(diǎn)P從O點(diǎn)開始沿射線OB方向運(yùn)動,運(yùn)動速度是1個(gè)單位/秒,運(yùn)動時(shí)間為t秒,直到點(diǎn)P與點(diǎn)B重合為止.
(1)設(shè)正方形PQRS與矩形OBCD重疊部分的面積為y,寫出y與t的函數(shù)關(guān)系式;
(2)y=2時(shí),求t的值;
(3)當(dāng)t為何值時(shí),三角形CSR為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•龍灣區(qū)一模)如圖,熱氣球從山頂A豎直上升至點(diǎn)B需25秒,點(diǎn)D在地面上,DC⊥AB,垂足為C,從地面上點(diǎn)D分別仰視A,B兩點(diǎn),測得∠ADC=20°,∠BDC=60°,若CD=130米.求該熱氣球從山頂A豎直上升至點(diǎn)B的平均速度.(結(jié)果精確到0.1米/秒)
(參考數(shù)據(jù):tan20°≈0.36,tan30°=0.58,tan60°≈1.73,tan70°≈2.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:中學(xué)學(xué)習(xí)一本通 數(shù)學(xué) 九年級下冊 北師大課標(biāo) 題型:044

如圖所示,在小山的東側(cè)A處有一熱氣球沿著與豎直方向夾角為的方向向東飛行,每分鐘飛行28 m,半小時(shí)后到達(dá)C處,這時(shí)氣球上的人發(fā)現(xiàn),在A處的正西方向有一處著火點(diǎn)B,5分鐘后,在D處測得著火點(diǎn)日的俯角是,求熱氣球升空點(diǎn)A與著火點(diǎn)B的距離.(結(jié)果精確到l m)

查看答案和解析>>

同步練習(xí)冊答案