【題目】如圖,在直線1上依次擺放著四個正方形和三個等腰直角三角形(陰影圖形),已知三個等腰直角三角形的面積從左到右分別為1、2、3,四個正方形的面積從左到右依次是S1、S2S3、S4,則S1+S2+S3+S4的值為( 。

A. 4 B. 5 C. 6 D. 8

【答案】D

【解析】

將已知的等腰直角三角形翻折得到時故正方形如圖所示,運用勾股定理可知,每兩個相鄰的正方形面積和都等于中間斜放的正方形面積,據(jù)此即可解答.

觀察發(fā)現(xiàn),

AB=BE,ACB=BDE=90°,

∴∠ABC+BAC=90°,ABC+EBD=90°,

∴∠BAC=EBD,

∴△ABC≌△BDE(AAS),

BC=ED,

AB2=AC2+BC2,

AB2=AC2+ED2=S1+S2,

S1+S2=2,

同理S3+S4=6.

S1+S2+S3+S4=2+6=8.

故選D.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,若兩條平行線EF,MN與直線AB,CD相交,則圖中共有同旁內(nèi)角的對數(shù)為( )

A. 4 B. 8 C. 12 D. 16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小軍同學在學校組織的社會調(diào)查活動中負責了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機調(diào)查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖)

(1)請根據(jù)題中已有的信息補全頻數(shù)分布表和頻數(shù)分布直方圖;

月均用水量/t

頻數(shù)

百分比

2≤x3

2

4%

3≤x4

12

24%

4≤x5

5≤x6

10

20%

6≤x7

12%

7≤x8

3

6%

8≤x9

2

4%

 

(2)如果家庭月均用水量大于或等于4 t且小于7 t”為中等用水量家庭,請你通過樣本估計總體中的中等用水量家庭大約有多少戶.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:
(1)甲登山上升的速度是每分鐘米,乙在A地時距地面的高度b為米.
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關(guān)系式.
(3)登山多長時間時,甲、乙兩人距地面的高度差為50米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB,CD,EF相交于點O,OG是∠AOF的平分線,∠BOD=35°,COE=18°,則∠COG的度數(shù)是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】完成下列推理過程:

已知:如圖,∠1+2=180°,3=B

求證:∠EDG+DGC=180°

證明:∵∠1+2=180°(已知)

1+DFE=180°(   

∴∠2=      

EFAB(   

∴∠3=      

又∵∠3=B(已知)

∴∠B=ADE(   

DEBC(   

∴∠EDG+DGC=180°(   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以長方形OBCD的頂點O為坐標原點建立平面直角坐標系,B點坐標為(0,a),C點坐標為(c,b),且a、b、C滿足+|2b+12|+(c﹣4)2=0.

(1)求B、C兩點的坐標;

(2)動點P從點O出發(fā),沿O→B→C的路線以每秒2個單位長度的速度勻速運動,設(shè)點P的運動時間為t秒,DC上有一點M(4,﹣3),用含t的式子表示三角形OPM的面積;

(3)當t為何值時,三角形OPM的面積是長方形OBCD面積的?直接寫出此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如下圖,在平面直角坐標系中,對進行循環(huán)往復的軸對稱變換,若原來點A坐標是,則經(jīng)過第2019次變換后所得的A點坐標是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y= x﹣3與x軸、y軸分別交于A、B兩點,P在以C(0,1)為圓心,1為半徑的圓上一動點,連結(jié)PA、PB,則△PAB面積的最大值是

查看答案和解析>>

同步練習冊答案