【題目】閱讀下列材料,并用相關(guān)的思想方法解決問題.

計(jì)算:(1﹣×++1×++).

++=t,則原式=(1﹣t)(t+1tt=t+t2tt+t2=

問題:

(1)計(jì)算:(1﹣×++1×++);

(2)解方程(x2+5x+1)(x2+5x+7)=7.

【答案】(1);(2)方程的解為x=﹣2或﹣3或0或﹣5.

【解析】試題分析:(1)設(shè),則原式= ,進(jìn)行計(jì)算即可;

2)設(shè),則原方程化為: ,求出t的值,再解一元二次方程即可.

試題解析:(1)設(shè)

則原式=

=

=;

2)設(shè),則原方程化為: ,解得:

當(dāng)時(shí), , ,

當(dāng)時(shí), ,==25﹣4×1×80,此時(shí)方程無解;

即原方程的解為: ,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一家水果店以每斤2元的價(jià)格購進(jìn)某種水果若干斤,然后以每斤4元的價(jià)格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價(jià)每降低0.1元,每天可多售出20斤.

1)若將這種水果每斤的售價(jià)降低x元,則每天的銷售量是多少斤(用含x的代數(shù)式表示);

2)銷售這種水果要想每天盈利300元,且保證每天至少售出260斤,那么水果店需將每斤的售價(jià)降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為A(0,m)、B(n,0),且|mn﹣3|+=0,點(diǎn)PA出發(fā),以每秒1個(gè)單位的速度沿射線AO勻速運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.

(1)OA、OB的長;

(2)連接PB,設(shè)△POB的面積為S,用t的式子表示S;

(3)過點(diǎn)P作直線AB的垂線,垂足為D,直線PDx軸交于點(diǎn)E,在點(diǎn)P運(yùn)動(dòng)的過程中,是否存在這樣的點(diǎn)P,使△EOP≌△AOB?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtBAC中,∠BAC=90°,EBC的中點(diǎn),ADBCAEDC,EFCD于點(diǎn)F

1)求證:DC=EC

2)若AB=6,BC=10,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有A型、B型、C型三種不同的紙板,其中A型:邊長為a厘米的正方形;B型:長為a厘米,寬為1厘米的長方形;C型:邊長為1厘米的正方形.

1A2塊,B4塊,C4塊,此時(shí)紙板的總面積為 平方厘米;

①從這10塊紙板中拿掉1A型紙板,剩下的紙板在不重疊的情況下,可以緊密的排出一個(gè)大正方形,這個(gè)大正方形的邊長為 厘米;

②從這10塊紙板中拿掉2塊同類型的紙板,使得剩下的紙板在不重疊的情況下,可以緊密地排出兩個(gè)相同的大正方形,請(qǐng)問拿掉的是2塊哪種類型的紙板?(計(jì)算說明)

2A12塊,B12塊,C4塊,從這28塊紙板中拿掉1塊紙板,使得剩下的紙板在不重疊的情況下,可以緊密地排出三個(gè)相同形狀的大正方形,則大正方形的邊長為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2+2x+m.

(1)如果二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn),求m的取值范圍;

(2)如圖,二次函數(shù)的圖象過點(diǎn)A(3,0),與y軸交于點(diǎn)B,直線AB與這個(gè)二次函數(shù)圖象的對(duì)稱軸交于點(diǎn)P,求點(diǎn)P的坐標(biāo).

(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,四邊形ABCD是平行四邊形,E,F是對(duì)角線AC上的兩點(diǎn),AE=CF.

1)求證:四邊形DEBF是平行四邊形;

2)如果AE=EF=FC,請(qǐng)直接寫出圖中2所有面積等于四邊形DEBF的面積的三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖, AF平分∠BAC,BC⊥AF, 垂足為E,點(diǎn)D與點(diǎn)A關(guān)于點(diǎn)E對(duì)稱,PB分別與線段CFAF相交于P,M

1)求證:AB=CD

2)若∠BAC=2∠MPC,請(qǐng)你判斷∠F∠MCD的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知長方形,點(diǎn).

1)如圖,有一動(dòng)點(diǎn)在第二象限的角平分線上,若,求的度數(shù);

2)若把長方形向上平移,得到長方形.

①在運(yùn)動(dòng)過程中,求的面積與的面積之間的數(shù)量關(guān)系;

②若,求的面積與的面積之比.

查看答案和解析>>

同步練習(xí)冊(cè)答案