【題目】如圖,在△ABC中,AB=AC=10,BC=16,點(diǎn)D為BC邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B、點(diǎn)C重合).以D為頂點(diǎn)作∠ADE=∠B,射線DE交AC邊于點(diǎn)E,過(guò)點(diǎn)A作AF⊥AD交射線DE于點(diǎn)F.
(1)求證:ABCE=BDCD;
(2)當(dāng)DF平分∠ADC時(shí),求AE的長(zhǎng);
(3)當(dāng)△AEF是等腰三角形時(shí),求BD的長(zhǎng).
【答案】(1)見解析;(2)AE=;(3)BD的長(zhǎng)為11或或.
【解析】
(1)根據(jù)等腰三角形的性質(zhì)得到∠B=∠C,根據(jù)三角形的外角性質(zhì)得到∠BAD=∠CDE,得到△BAD∽△CDE,根據(jù)相似三角形的性質(zhì)證明結(jié)論;
(2)證明,根據(jù)平行線的性質(zhì)得到=,證明△BDA∽△BAC,根據(jù)相似三角形的性質(zhì)列式計(jì)算,得到答案;
(3)分點(diǎn)F在DE的延長(zhǎng)線上、點(diǎn)F在線段DE上兩種情況,根據(jù)等腰三角形的性質(zhì)計(jì)算即可.
(1)證明:∵AB=AC,
∴∠B=∠C,
∠ADC=∠BAD+∠B,∠ADE=∠B,
∴∠BAD=∠CDE,又∠B=∠C,
∴△BAD∽△CDE,
∴=,即ABCE=BDCD;
(2)解:∵DF平分∠ADC,
∴∠ADE=∠CDE,
∵∠CDE=∠BAD,
∴∠ADE=∠BAD,
∴,
∴=,
∵∠BAD=∠ADE=∠B,
∴∠BAD=∠C,又∠B=∠B,
∴△BDA∽△BAC,
∴=,即=
解得,BD=,
∴=,
解得,AE=;
(3)解:作AH⊥C于H,
∵AB=AC,AH⊥BC,
∴BH=HC=BC=8,
由勾股定理得,AH===6,
∴tanB==,
∴tan∠ADF==,
設(shè)AF=3x,則AD=4x,
由勾股定理得,DF==5x,
∵△BAD∽△CDE,
∴=,
當(dāng)點(diǎn)F在DE的延長(zhǎng)線上,FA=FE時(shí),DE=5x﹣3x=2x,
∴=,
解得,CD=5,
∴BD=BC﹣CD=11,
當(dāng)EA=EF時(shí),DE=EF=2.5x,
∴=,
解得,CD=,
∴BD=BC﹣CD=;
當(dāng)AE=AF=3x時(shí),DE=x,
∴=,
解得,CD=,
∴BD=BC﹣CD=;
當(dāng)點(diǎn)F在線段DE上時(shí),∠AFE為鈍角,
∴只有FA=FE=3x,則DE=8x,
∴=,
解得,CD=20>16,不合題意,
∴△AEF是等腰三角形時(shí),BD的長(zhǎng)為11或或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有兩把不同的鎖和四把不同的鑰匙,其中兩把鑰匙恰好分別能打開這兩把鎖,其余的鑰匙不能打開這兩把鎖.現(xiàn)在任意取出一把鑰匙去開任意一把鎖.
(1)請(qǐng)用列表或畫樹狀圖的方法表示出上述試驗(yàn)所有可能結(jié)果;
(2)求一次打開鎖的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是中國(guó)傳統(tǒng)數(shù)學(xué)最重要的著作,奠定了中國(guó)傳統(tǒng)數(shù)學(xué)的基本框架.它的代數(shù)成就主要包括開方術(shù)、正負(fù)術(shù)和方程術(shù).其中,方程術(shù)是《九章算術(shù)》最高的數(shù)學(xué)成就.《九章算術(shù)》“勾股”一章記載:“今有戶高多于廣六尺八寸,兩隅相去適一丈.問戶高、廣各幾何?”譯文:已知長(zhǎng)方形門的高比寬多6尺8寸,門的對(duì)角線長(zhǎng)1丈,那么門的高和寬各是多少?(1丈=10尺,1尺=10寸)設(shè)長(zhǎng)方形門的寬尺,可列方程為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】九年級(jí)(1)班要從甲乙兩名同學(xué)中選派一人去參加學(xué)校舉行的”掃黑除惡”知識(shí)競(jìng)賽,王老師準(zhǔn)備用一副撲克牌中排列數(shù)字分別為,,,的四張撲克牌做抽數(shù)字游戲,決定誰(shuí)去參加比賽,游戲規(guī)則為;將這四張牌的正面全部朝下,洗勻后從中隨機(jī)抽取一張,得到的數(shù)字作為十位上的數(shù)字,然后將所抽到的牌放回,再?gòu)闹须S機(jī)抽取一張,得到的數(shù)字作為個(gè)位上的數(shù)字,這樣就得到了一個(gè)兩位數(shù),若這個(gè)兩位數(shù)小于,則甲勝,否則乙獲勝,且游戲的獲勝者將去參加比賽.
(1)求抽取的撲克牌使得十位數(shù)字是的概率;
(2)你認(rèn)為這個(gè)游戲公平嗎?請(qǐng)運(yùn)用概率知識(shí)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AC平分∠DAB,AC2=ABAD,∠ADC=90°,點(diǎn)E為AB的中點(diǎn).
(1)求證:△ADC∽△ACB.
(2)若AD=2,AB=3,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某區(qū)域平面示意圖如圖,點(diǎn)O在河的一側(cè),AC和BC表示兩條互相垂直的公路.甲勘測(cè)員在A處測(cè)得點(diǎn)O位于北偏東45°,乙勘測(cè)員在B處測(cè)得點(diǎn)O位于南偏西73.7°,測(cè)得AC=840m,BC=500m.請(qǐng)求出點(diǎn)O到BC的距離.參考數(shù)據(jù):sin73.7°≈,cos73.7°≈,tan73.7°≈
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.了解“樂山市初中生每天課外閱讀書籍時(shí)間的情況”最適合的調(diào)查方式是全面調(diào)查
B.甲乙兩人跳繩各10次,其成績(jī)的平均數(shù)相等,,則甲的成績(jī)比乙穩(wěn)定
C.一口袋中裝有除顏色外其余均相同的紅色小球2個(gè),藍(lán)色小球1個(gè),從中隨機(jī)一次性摸出2個(gè)小球,則恰好摸到同色小球的概率是
D.“任意畫一個(gè)三角形,其內(nèi)角和是360°”這一事件是不可能事件
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線C1:y=ax2+bx﹣1經(jīng)過(guò)點(diǎn)A(﹣2,1)和點(diǎn)B(﹣1,﹣1),拋物線C2:y=2x2+x+1,動(dòng)直線x=t與拋物線C1交于點(diǎn)N,與拋物線C2交于點(diǎn)M.
(1)求拋物線C1的表達(dá)式;
(2)直接用含t的代數(shù)式表達(dá)線段MN的長(zhǎng);
(3)當(dāng)△AMN是以MN為直角邊的等腰直角三角形時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)閱讀下列材料,并完成相應(yīng)的任務(wù).
人類會(huì)作圓并且真正了解圓的性質(zhì)是在2000多年前,由我國(guó)的墨子給出圓的概念:“一中同長(zhǎng)也.”.意思說(shuō),圓有一個(gè)圓心,圓心到圓周的長(zhǎng)都相等.這個(gè)定義比希臘數(shù)學(xué)家歐幾里得給圓下的定義要早100年.與圓有關(guān)的定理有很多,弦切角定理就是其中之一.
我們把頂點(diǎn)在圓上,一邊和圓相交,另一邊和圓相切的角叫做弦切角.
弦切角定理:弦切角的度數(shù)等于它所夾弧所對(duì)的圓周角度數(shù).
下面是弦切角定理的部分證明過(guò)程:
證明:如圖①,AB與⊙O相切于點(diǎn)A.當(dāng)圓心O在弦AC上時(shí),容易得到∠CAB=90°,所以弦切角∠BAC的度數(shù)等于它所夾半圓所對(duì)的圓周角度數(shù).
如圖②,AB與⊙O相切于點(diǎn)A,當(dāng)圓心O在∠BAC的內(nèi)部時(shí),過(guò)點(diǎn)A作直徑AD交⊙O于點(diǎn)D,在上任取一點(diǎn)E,連接EC,ED,EA,則∠CED=∠CAD.
…
任務(wù):
(1)請(qǐng)按照上面的證明思路,寫出該證明的剩余部分;
(2)如圖③,AB與⊙O相切于點(diǎn)A.當(dāng)圓心O在∠BAC的外部時(shí),請(qǐng)寫出弦切角定理的證明過(guò)程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com