【題目】如圖,在正方形ABCD中,=6,點在邊上,且=3.將沿對折至,延長交邊于點,連結(jié),.則下列結(jié)論:①;②;③AG∥CF;④;⑤.其中正確的個數(shù)是( 。
A.2B.3C.4D.5
【答案】C
【解析】
根據(jù)正方形的性質(zhì)得出,,求出,,根據(jù)推出,推出,,設(shè),則,,在中,由勾股定理得出,求出,得出,求出,推出,根據(jù)全等得出,,求出,從而可得∠AGF+∠AEF=135°,即可得,即根據(jù)三角形面積求出、,即可得出結(jié)論.
解:四邊形是正方形,
,,
,
,
沿折疊得到,
,,,
,
在和中
,
①正確;
,
,,
設(shè),則,,
在中,由勾股定理得:,
,,
解得:,
,
②正確;
,
,
,
又,
,
,,
,
③正確;
∵,
,
∴
④正確;
沿折疊得到,
,
,
,
,
,
,
∴∠AGF+∠AEF=,
又∵∠AGF=∠AGB,∠AEF=∠AED,
∴.
⑤正確;
故選:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點D是BC邊的中點,BD=2,tanB=.
(1)求AD和AB的長;
(2)求sin∠BAD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們規(guī)定:對于已知線段,若存在動點(點不與、重合),始終滿足,則稱是“雅動三角形”,其中,點為“雅動點”,為它的“雅動值”.
圖1 圖2 圖3
(1)如圖1,為坐標(biāo)原點,點坐標(biāo)是,的“雅動值”為,當(dāng)時,請直接寫出這個三角形的周長;
(2)如圖2,已知四邊形是矩形,點、的坐標(biāo)分別是、,直線(且)交、軸于、兩點,連接、并延長交于點,問:是否為“雅動三角形”?如果是,請求出它的“雅動值”;如果不是,請說明理由;
(3)如圖3,已知(是常數(shù)且),點是平面內(nèi)一動點且滿足,若、的平分線交于點,問:點的運動軌跡長度是否為定值?如果是,請求出它的軌跡長度;如果不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,有3張不透明的卡片,除正面寫有不同的數(shù)字外,其他均相同。將這三張卡片背面朝上洗勻后,第一次從中隨機(jī)抽取一張,并把這張卡片標(biāo)有數(shù)字記作一次函數(shù)表達(dá)式中的k,第二次從余下的兩張卡片中再隨機(jī)抽取一張,上面標(biāo)有的數(shù)字記作一次函數(shù)表達(dá)式中的b。
(1)寫出k為負(fù)數(shù)的概率;
(2)求一次函數(shù)y=kx+b的圖像經(jīng)過二、三、四象限的概率(用樹狀圖或列表法求解)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知在△ABC中,∠B=90°,AB=6cm,BC=12cm,點Q從點A開始沿AB邊向點B以1cm/s的速度移動,點P從點B開始沿BC邊向點C以2cm/s的速度移動.
(1)如果Q、P分別從A、B兩點出發(fā),那么幾秒后,△PBQ的面積等于8cm2?
(2)在(1)中,△PBQ的面積能否等于10cm2?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】暑假期間,某景區(qū)商店推出銷售紀(jì)念品活動,已知紀(jì)念品每件的進(jìn)貨價為30元,經(jīng)市場調(diào)研發(fā)現(xiàn),當(dāng)該紀(jì)念品的銷售單價為40元時,每天可銷售280件;當(dāng)銷售單價每增加1元,每天的銷售數(shù)量將減少10件.(銷售利潤=銷售總額﹣進(jìn)貨成本)
(1)若該紀(jì)念品的銷售單價為45元時,則當(dāng)天銷售量為 件.
(2)當(dāng)該紀(jì)念品的銷售單價為多少元時,該紀(jì)念品的當(dāng)天銷售銷售利潤是2610元.
(3)當(dāng)該紀(jì)念品的銷售單價定為多少元時,該紀(jì)念品的當(dāng)天銷售銷售利潤達(dá)到最大值?求此最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把拋物線y=x2平移得到拋物線m,拋物線m經(jīng)過點A(﹣6,0)和原點O(0,0),它的頂點為P,它的對稱軸與拋物線y=x2交于點Q,則圖中陰影部分的面積為 ▲ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A(﹣4,2)、B(n,﹣4)兩點是一次函數(shù)y=kx+b和反比例函數(shù)y=圖象的兩個交點.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△AOB的面積;
(3)觀察圖象,直接寫出不等式kx+b﹣>0的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,點D,E分別是AB,AC的中點,點G,F在BC邊上(均不與端點重合),DG∥EF.將△BDG繞點D順時針旋轉(zhuǎn)180°,將△CEF繞點E逆時針旋轉(zhuǎn)180°,拼成四邊形MGFN,則四邊形MGFN周長l的取值范圍是___________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com