【題目】如圖,以AB為直徑的⊙O經過點P,C是⊙O上一點,連接PC交AB于點E,且∠ACP=60°,PA=PD.
(1)試判斷PD與⊙O的位置關系,并說明理由;
(2)若:=1:2,求AE:EB:BD的值(請你直接寫出結果);
(3)若點C是弧AB的中點,已知AB=4,求CECP的值.
【答案】(1)PD與⊙O相切.理由見解析;(2)3:1:2(3)8
【解析】
試題分析:(1)連OP,根據圓周角定理得到∠AOP=2∠ACP=120°,則∠PAO=∠APO=30°,利用PA=PD得到∠D=∠PAD=30°,則∠APD=180°﹣30°﹣30°=120°,于是得到∠OPD=120°﹣30°=90°,根據切線的判定定理即可得到PD是⊙O的切線;
(2)連BC,由AB為直徑,根據直徑所對的圓周角為直角得到∠ACB=90°,利用:=1:2,則∠ABC=2∠BAC,所以有∠BAC=30°,∠ABC=60°,而∠PAE=30°,得到AE垂直平分PC,設BE=x,然后利用含30°的直角三角形三邊的關系可求出AE:EB:BD的值;
(3)根據圓周角定理由弧AC=弧BC,得到∠CAB=∠APC,OC⊥AB,根據相似三角形的判定方法易得△ACE∽△PCA,則,即AC2=PCCE,利用勾股定理有A02+OC2=AC2=8,即可得到CECP的值.
解:(1)PD與⊙O相切.理由如下:
連接OP,
∵∠ACP=60°,
∴∠AOP=120°,
而OA=OP,
∴∠PAO=∠APO=30°,
∵PA=PD,
∴∠D=∠PAD=30°,
∴∠APD=180°﹣30°﹣30°=120°,
∴∠OPD=120°﹣30°=90°,
∵OP為半徑,
∴PD是⊙O的切線;
(2)連BC,
∵AB為直徑,
∴∠ACB=90°,
∵:=1:2,
∴∠ABC=2∠BAC,
∴∠BAC=30°,∠ABC=60°,
而∠PAE=30°,
∴∠APE=∠DPE=60°,
∴AE垂直平分PC,如圖,
設BE=x,在Rt△BCE中,∠BCE=30°,則BC=2BE=2x,
在Rt△ABC中,∠CAB=30°,AB=2BC=4x,
∴AE=AB﹣BE=3x,
∵PA=PD,PE⊥AD,
∴AE=DE,
∴DB=3x﹣x=2x,
∴AE:EB:BD的值為3:1:2;
(3)如圖,連接OC,
∵弧AC=弧BC,CO⊥AD,
∴∠CAB=∠APC,OC⊥AB,
而∠ACE=∠PCA,
∴△ACE∽△PCA,
∴,即AC2=PCCE,
∵A02+OC2=AC2=8,
∴PCCE=AC2=8.
科目:初中數(shù)學 來源: 題型:
【題目】下列語句中真命題有( )
①點到直線的垂線段叫做點到直線的距離;②內錯角相等;③兩點之間線段最短;④過一點有且只有一條直線與已知直線平行;⑤在同一平面內,若兩條直線都與第三條直線垂直,則這兩條直線互相平行.
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一只不透明的盒子里有背面完全相同,正面上分別寫有數(shù)字1、2、3、4的四張卡片,小馬從中隨機地抽取一張,把卡片上的數(shù)字作為被減數(shù);在另一只不透明的盒子里將形狀、大小完全相同,分別標有數(shù)字1、2、3的三個小球混合后,小虎從中隨機地抽取一個,把小球上的數(shù)字做為減數(shù),然后計算出這兩個數(shù)的差.
(1)請你用畫樹狀圖或列表的方法,求這兩數(shù)差為0的概率;
(2)小馬與小虎做游戲,規(guī)則是:若這兩數(shù)的差為非正數(shù),則小馬贏;否則小虎贏.你認為該游戲公平嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若將點A(1,3)向左平移2個單位,再向下平移4個單位得到點B,則點B的坐標為( )
A. (﹣1,0) B. (﹣1,﹣1) C. (﹣2,0) D. (﹣2,﹣1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD,點P是對角線AC上一點,連結BP,過P作PQ⊥BP,PQ交CD于Q,若AP=4,CQ=10,則正方形ABCD的面積為 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com